Numerical verification of three point bending experiment of magnetorheological elastomer (MRE) in magnetic field
Danuta Miedzinska; Anna Boczkowska; Konrad Zubko
Журнал:
Journal of Physics: Conference Series
Дата:
2010-07-01
Аннотация:
In the article a method of numerical verification of experimental results for magnetorheological elastomer samples (MRE) is presented. The samples were shaped into cylinders with diameter of 8 mm and height of 20 mm with various carbonyl iron volume shares (1,5%, 11,5% and 33%). The diameter of soft ferromagnetic substance particles ranged from 6 to 9 μm. During the experiment, initially bended samples were exposed to the magnetic field with intensity levels at 0,1T, 0,3T, 0,5T, 0,7 and 1T. The reaction of the sample to the field action was measured as a displacement of a specimen. Numerical calculation was carried out with the MSC Patran/Marc computer code. For the purpose of numerical analysis the orthotropic material model with the material properties of magnetorheological elastomer along the iron chains, and of the pure elastomer along other directions, was applied. The material properties were obtained from the experimental tests. During the numerical analysis, the initial mechanical load resulting from cylinder deflection was set. Then, the equivalent external force, that was set on the basis of analytical calculations of intermolecular reaction within iron chains in the specific magnetic field, was put on the bended sample. Correspondence of such numerical model with results of the experiment was verified. Similar results of the experiments and both theoretical and FEM analysis indicates that macroscopic modeling of magnetorheological elastomer mechanical properties as orthotropic material delivers accurate enough description of the material's behavior.
653.9Кб