Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ville Kolehmainen
Автор Matti Lassas
Автор Petri Ola
Дата выпуска 2007-06-01
dc.description We show how to eliminate the error caused by an incorrectly modeled boundary in electrical impedance tomography (EIT). In practical EIT measurements one usually lacks the exact knowledge of the boundary. Because of this the numerical reconstruction from the measured EIT data has to be computed using a model domain that represents the best guess for the true domain. However, it has been noticed in simulations and practical experiments that the errors in the model of the boundary cause severe errors to the reconstructions. We consider the two dimensional and higher dimensional cases separately. In the two dimensional case we review recent algorithms for finding a deformed image of the original isotropic conductivity based on the theory of Teichmüller spaces. For the higher dimensional case, we compare the higher dimensional and the two dimensional results and observe that the properties of the problem change in a radical way when the dimension changes.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт © 2007 IOP Publishing Ltd
Название Calderón's inverse problem with an imperfectly known boundary in two and three dimensions
Тип paper
DOI 10.1088/1742-6596/73/1/012002
Electronic ISSN 1742-6596
Print ISSN 1742-6588
Журнал Journal of Physics: Conference Series
Том 73
Первая страница 12002
Последняя страница 12011
Выпуск 1

Скрыть метаданые