Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Y El Hassouani
Автор E H El Boudouti
Автор B Djafari-Rouhani
Автор R Rais
Дата выпуска 2007-12-01
dc.description Using a Green's function method, we investigate theoretically the eigenmodes of a finite one-dimensional phononic crystal (superlattice) composed of N alternating layers of an elastic solid and an ideal fluid. If the finite superlattice is free of stress on both sides, we show that there are always N-1 modes in the allowed bands whereas there is one and only one mode corresponding to each band gap. This mode is either a surface mode in the band gap or a constant-frequency confined band-edge mode. If the finite superlattice is bounded from one side by a homogeneous fluid whereas the other surface is kept free, then an incident phonon from the fluid is perfectly reflected, however this reflection takes place with a large delay time if the frequency of the incident phonon coincides with the eigenfrequency of a surface mode
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт © 2007 IOP Publishing Ltd
Название Surface and confined acoustic waves in finite size 1D solid-fluid phononic crystals
Тип paper
DOI 10.1088/1742-6596/92/1/012113
Electronic ISSN 1742-6596
Print ISSN 1742-6588
Журнал Journal of Physics: Conference Series
Том 92
Первая страница 12113
Последняя страница 12116
Выпуск 1

Скрыть метаданые