Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Scrivens, J E
Автор DeWeerth, S P
Автор Ting, L H
Дата выпуска 2008-06-01
dc.description Postural stability in standing balance results from the mechanics of body dynamics as well as active neural feedback control processes. Even when an animal or human has multiple legs on the ground, active neural regulation of balance is required. When the postural configuration, or stance, changes, such as when the feet are placed further apart, the mechanical stability of the organism changes, but the degree to which this alters the demands on neural feedback control for postural stability is unknown. We developed a robotic system that mimics the neuromechanical postural control system of a cat in response to lateral perturbations. This simple robotic system allows us to study the interactions between various parameters that contribute to postural stability and cannot be independently varied in biological systems. The robot is a ‘planar’, two-legged device that maintains compliant balance control in a variety of stance widths when subject to perturbations of the support surface, and in this sense reveals principles of lateral balance control that are also applicable to bipeds. Here we demonstrate that independent variations in either stance width or delayed neural feedback gains can have profound and often surprisingly detrimental effects on the postural stability of the system. Moreover, we show through experimentation and analysis that changing stance width alters fundamental mechanical relationships important in standing balance control and requires a coordinated adjustment of delayed feedback control to maintain postural stability.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2008 IOP Publishing Ltd
Название A robotic device for understanding neuromechanical interactions during standing balance control
Тип paper
DOI 10.1088/1748-3182/3/2/026002
Print ISSN 1748-3190
Журнал Bioinspiration & Biomimetics
Том 3
Первая страница 26002
Последняя страница 26012
Аффилиация Scrivens, J E; Department of Mechanical Engineering, Interdisciplinary Bioengineering Program, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332-0535, USA
Аффилиация DeWeerth, S P; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332-0535, USA
Аффилиация Ting, L H; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332-0535, USA;
Выпуск 2

Скрыть метаданые