Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Nečas, D
Автор Ohlídal, I
Автор Franta, D
Дата выпуска 2011-08-01
dc.description A theoretical approach for including considerable thickness non-uniformity of thin films into the formulae employed within variable-angle spectroscopic ellipsometry is presented. It is based on a combination of the efficient formulae derived for the thickness distribution density corresponding to a wedge-shaped non-uniformity with dependences of the mean thickness and root mean square (rms) of thickness differences on the angle of incidence that take into account the real non-uniformity of the shape. These dependences are derived using momentum expansion of the thickness distribution density. The derived formulae are tested by means of numerical analysis. An application of this approach is illustrated using the optical characterization of a selected sample of non-uniform SiO<sub>x</sub>C<sub>y</sub>H<sub>z</sub> thin films using phase-modulated ellipsometry.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт IOP Publishing Ltd
Название Variable-angle spectroscopic ellipsometry of considerably non-uniform thin films
Тип paper
DOI 10.1088/2040-8978/13/8/085705
Electronic ISSN 2040-8986
Print ISSN 2040-8978
Журнал Journal of Optics
Том 13
Первая страница 85705
Последняя страница 85714
Аффилиация Nečas, D; CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic ; Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Аффилиация Ohlídal, I; Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Аффилиация Franta, D; CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic ; Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Выпуск 8

Скрыть метаданые