Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Kersten, Daniel
Автор Mamassian, Pascal
Автор Yuille, Alan
Дата выпуска 2004
dc.description We perceive the shapes and material properties of objects quickly and reliably despite the complexity and objective ambiguities of natural images. Typical images are highly complex because they consist of many objects embedded in background clutter. Moreover, the image features of an object are extremely variable and ambiguous owing to the effects of projection, occlusion, background clutter, and illumination. The very success of everyday vision implies neural mechanisms, yet to be understood, that discount irrelevant information and organize ambiguous or noisy local image features into objects and surfaces. Recent work in Bayesian theories of visual perception has shown how complexity may be managed and ambiguity resolved through the task-dependent, probabilistic integration of prior object knowledge with image features.
Формат application.pdf
Издатель Annual Reviews
Копирайт Annual Reviews
Название Object Perception as Bayesian Inference
DOI 10.1146/annurev.psych.55.090902.142005
Print ISSN 0066-4308
Журнал Annual Review of Psychology
Том 55
Первая страница 271
Последняя страница 304
Аффилиация Kersten, Daniel; Department of Psychology, University of Minnesota , Minneapolis, Minnesota 55455 ; email: kersten@umn.edu

Скрыть метаданые