Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Klopf, A., Harry
Автор Weaver, Scott, E.
Автор Morgan, James, S.
Дата выпуска 1993
dc.description A computational model of nervous system function during classical and instrumental conditioning is proposed. The model assumes the form of a hierarchical network of control systems. Each control system is capable of learning and is referred to as an associative control process (ACP). Learning systems consisting of ACP networks, employing the drive-reinforcement learning mechanism (Klopf, 1988) and engaging in real-time, closed-loop, goal-seeking interactions with environments, are capable of being classically and instrumentally conditioned, as demonstrated by means of computer simulations. In multiple-T mazes, the systems learn to chain responses that avoid punishment and that lead eventually to reward. The temporal order in which the responses are learned and extinguished during instrumental conditioning is consistent with that observed in animal learning. Also consistent with animal learning experimental evidence, the ACP network model accounts for a wide range of classical conditioning phenomena. ACP networks, at their current stage of development, are intended to model sensorimotor, limbic, and hypothalamic nervous system function, suggesting a relationship between classical and instrumental conditioning that extends Mowrer's (1956, 1960a/1973) two-factor theory of learning. In conjunction with consideration of limbic system and hypothalamic function, the role of emotion in natural intelligence is modeled and discussed. ACP networks constitute solutions to temporal and structural credit assignment problems, suggesting a theoretical approach for the synthesis of machine intelligence.
Издатель Sage Publications
Тема computational neuroethology
Тема learning
Тема control theory
Тема networks
Название A Hierarchical Network of Control Systems that Learn: Modeling Nervous System Function During Classical and Instrumental Conditioning
Тип Journal Article
DOI 10.1177/105971239300100302
Print ISSN 1059-7123
Журнал Adaptive Behavior
Том 1
Первая страница 263
Последняя страница 319
Аффилиация Klopf, A., Harry, Wright Laboratory
Аффилиация Weaver, Scott, E., Wright Laboratory
Аффилиация Morgan, James, S., Wright Laboratory
Выпуск 3
Библиографическая ссылка Arbib, M. (1972). The metaphorical brain. New York: Wiley.
Библиографическая ссылка Ashby, W.R. (1952). Design for a brain. New York : Wiley.
Библиографическая ссылка Baird, L.C., & Baker, W.L. (1990). A connectionist system for nonlinear control. Proceedings of the American Institute of Aeronautics and Astronautics Conference on Guidance, Navigation, and Control. Boston, MA.
Библиографическая ссылка Baker, W.L., & Farrell, J.A. (1992). An introduction to connectionist learning control systems. In D. A. White & D. A. Sofge (Eds.), The handbook of intelligent control. New York: Van Nostrand Reinhold.
Библиографическая ссылка Bartha, G.T., Thompson, R.F., & Gluck, M.A. (1991). Sensorimotor learning and the cerebellum. In M. Arbib & J. Ewert (Eds.), Visual structures and integrated functions . Berlin: Springer-Verlag.
Библиографическая ссылка Barto, A.G. (1991). Some learning tasks from a control perspective . In L. Nadel & D. Stein (Eds.), 1990 Lectures in complex systems. Redwood City, CA: Addison-Wesley.
Библиографическая ссылка Barto, A.G., & Sutton, R.S. (1981). Goal seeking components for adaptive intelligence: An initial assessment (Technical Report Number 81-1070). Wright-Patterson Air Force Base, OH: Air Force Wright Aeronautical Laboratories. (DTIC Report AD 101476 available from the Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.)
Библиографическая ссылка Barto, A.G., Sutton, R.S., & Anderson, C.W. (1983). Neuronlike elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13, 835-846.
Библиографическая ссылка [Reprinted in Anderson, J. A., & Rosenfeld, E. (Eds.). (1988), Neurocomputing: Foundations of research. Cambridge, MA: MIT Press.]
Библиографическая ссылка Barto, A.G., Sutton, R.S., & Watkins, C.J.C.H. (1990). Learning and sequential decision making. In M. Gabriel & J. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks. Cambridge, MA: MIT Press.
Библиографическая ссылка Beer, R.D. (1990). Intelligence as adaptive behavior: An experiment in computational neuroethology. San Diego: Academic Press.
Библиографическая ссылка Berridge, K.C., & Grill, H.J. (1983). Alternating ingestive and aversive consummatory responses suggest a two-dimensional analysis of palatability in rats. Behavioral Neuroscience, 97(4), 563-573.
Библиографическая ссылка Bindra, D. (1972). A unified account of classical conditioning and operant training. In A. H. Black & W F Prokasy (Eds.), Classical conditioning II: Current research and theory. New York : Appleton-Century-Crofts.
Библиографическая ссылка Booker, L.B. (1982). Intelligent behavior as an adaptation to the task environment (Doctoral dissertation, University of Michigan , 1982). Dissertation Abstracts International, 43, 469B.
Библиографическая ссылка Brown, T.H., Kairiss, E.W., & Keenan, C.L. (1990). Hebbian synapses: Biophysical mechanisms and algorithms . Annual Review of Neuroscience, 13, 475-511.
Библиографическая ссылка Byrne, J.H. (1987). Cellular analysis of associative learning. Physiological Reviews, 67, 329-439.
Библиографическая ссылка Carew, T.J., & Sahley, C.L. (1986). Invertebrate learning and memory: From behavior to molecules. Annual Review of Neuroscience, 9, 435-487.
Библиографическая ссылка Carlson, N.R. (1986). Physiology of behavior (3rd ed.). Boston: Allyn and Bacon .
Библиографическая ссылка Carpenter, W.B. (1874). Principles of mental physiology, with their applications to the training and discipline of the mind and the study of its morbid conditions . New York: Appleton-Century-Crofts .
Библиографическая ссылка Cliff, D.T. (1990). Computational neuroethology: A provisional manifesto (Cognitive Science Research Paper 162). Brighton, England: School of Cognitive and Computing Sciences, The University of Sussex.
Библиографическая ссылка Colwill, R.M., & Rescorla, R.A. (1990). Evidence for the hierarchical structure of instrumental learning. Animal Learning and Behavior , 18(1), 71-82.
Библиографическая ссылка Cooper, J.R., Bloom, F.E., & Roth, R.H. (1991). The biochemical basis of neuropharmacology. New York: Oxford University Press.
Библиографическая ссылка Desmond, J.E. (1990). Temporally adaptive responses in neural models: The stimulus trace. In M. Gabriel & J. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks. Cambridge, MA: MIT Press.
Библиографическая ссылка Dickinson, A. (1980). Contemporary animal learning theory. Cambridge: Cambridge University Press.
Библиографическая ссылка Dreyfus, H.L. (1992). What computers still can't do: A critique of artificial reason. Cambridge, MA: MIT Press .
Библиографическая ссылка Flaherty, C.F. (1985). Animal learning and cognition. New York: Knopf.
Библиографическая ссылка Fonberg, E. (1986). Amygdala, emotions, motivation, and depressive states. In R. Plutchik & H. Kellerman (Eds.), Emotion: Theory, research, and experience, Vol. 3. New York: Academic Press.
Библиографическая ссылка Ford, E.E. (1989). Fostering self-control: Comments of a counselor . In W A. Hershberger (Ed.), Volitional action. New York: Elsevier Science Publishers.
Библиографическая ссылка Frese, M., & Sabini, J. (Eds.). (1985). Goal directed behavior: The concept of action in psychology. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Gallistel, C.R. (1980). The organization of action: A new synthesis. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Gibson, J.J. (1950). The perception of the visual world. Boston: Houghton Mifflin.
Библиографическая ссылка Gibson, J.J. (1966). The senses considered as perceptual systems. New York: Houghton Mifflin.
Библиографическая ссылка Gibson, J.J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
Библиографическая ссылка Glickman, S.E., & Schiff, B.B. (1967). A biological theory of reinforcement. Psychological Review, 74(2), 81-109.
Библиографическая ссылка Gluck, M.A., Parker, D.B., & Reifsnider, E. (1988). Some biological implications of a differential-Hebbian learning rule. Psychobiology, 16(3), 298-302.
Библиографическая ссылка Gray, J.A. (1975). Elements of a two-process theory of learning. New York: Academic Press.
Библиографическая ссылка Gray, J.A. (1982). The neurophysiology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Clarendon Press.
Библиографическая ссылка Gray, J.A. (1987). The psychology of fear and stress (2nd ed.). Cambridge, Engl.: Cambridge University Press.
Библиографическая ссылка Grossberg, S. (1971). Pavlovian pattern learning by nonlinear neural networks. Proceedings of the National Academy of Sciences , 68, 828-831.
Библиографическая ссылка Grossberg, S. (1982). Studies of mind and brain. Boston: Reidel.
Библиографическая ссылка Grossberg, S. (Ed.). (1987). The adaptive brain (Vols. 1 & 2). New York: North-Holland .
Библиографическая ссылка Hall, J.F. (1989). Learning and memory (2nd ed.). Boston: Allyn and Bacon .
Библиографическая ссылка Hampson, S.E. (1990). Connectionistic problem solving: Computational aspects of biological learning. Boston: Birkhauser.
Библиографическая ссылка Heath, R.G. (1986). The neural substrate for emotion. In R. Plutchik & H. Kellerman (Eds.), Emotion: Theory, research, and experience, Vol. 3, New York: Academic Press.
Библиографическая ссылка Hill, J.H. (1939). Goal gradient, anticipation, and perseveration in compound trial-and-error learning. Journal of Experimental Psychology, 25, 566-585.
Библиографическая ссылка Hofsten, C. von (1990). A perception-action perspective on the development of manual movements. In M. Jeannerod (Ed.), Attention and performance XIII. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Hull, C.L. (1943). Principles of behavior. New York: Appleton-Century-Crofts.
Библиографическая ссылка Hull, C.L. (1952). A behavior system: An introduction to behavior theory concerning the individual organism. New Haven: Yale University Press.
Библиографическая ссылка Ito, M. ( 1989). Long-term depression. Annual Review of Neuroscience, 12, 85-102.
Библиографическая ссылка Johnson, J.D. (1991). The selectively attentive environmental learning system. Unpublished doctoral dissertation, University of Cincinnati.
Библиографическая ссылка Kelso, J.A.S., Delcolle, J.D., & Schoner, G. (1990). Action-perception as a pattern formation process . In M. Jeannerod (Ed.), Attention and performance XIII. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Klapp, S.T., Porter-Graham, K.A., & Hoifjeld, A.R. (1991). The relation of perception and motor action: Ideomotor compatibility and interference in divided attention . Journal of Motor Behavior, 23(3), 155-162.
Библиографическая ссылка Klopf, A.H. (1972). Brain function and adaptive systems—A heterostatic theory (Report No. 133 [AFCRL-72-0164]). L. G. Hanscom Field, Bedford, MA: Air Force Cambridge Research Laboratories . (DTIC Report AD 742259, available from the Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.)
Библиографическая ссылка Klopf, A.H. (1982). The hedonistic neuron: A theory of memory, learning, and intelligence. New York: Hemisphere/Taylor and Francis.
Библиографическая ссылка Klopf, A.H. (1986). A drive-reinforcement model of single neuron function: An alternative to the Hebbian neuronal model. In J. S. Denker (Ed.), AIP Conference Proceedings 151: Neural networks for computing. New York: American Institute of Physics.
Библиографическая ссылка Klopf, A.H. (1988). A neuronal model of classical conditioning. Psychobiology, 16(2), 85-125.
Библиографическая ссылка Klopf, A.H. (1989). Classical conditioning phenomena predicted by a drive-reinforcement model of neuronal function. In J. H. Byrne & W O. Berry (Eds.), Neural models of plasticity: Experimental and theoretical approaches . New York: Academic Press.
Библиографическая ссылка Klopf, A.H., & Morgan, J.S. (1990). The role of time in natural intelligence: Implications of classical and instrumental conditioning for neuronal and neural network modeling. In M. Gabriel & J. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks. Cambridge, MA: MIT Press.
Библиографическая ссылка Kosko, B. (1986). Differential Hebbian learning. In J. S. Denker (Ed.), AIP Conference Proceedings 151: Neural networks for computing. New York : American Institute of Physics.
Библиографическая ссылка Leiner, H.C., Leiner, A.L., & Dow, R.S. (1986). Does the cerebellum contribute to mental skills ? Behavioral Neuroscience, 100(4), 443-454.
Библиографическая ссылка Levine, D.S. (1991). Introduction to neural and cognitive modeling . Hillsdale, NJ: Lawrence Erlbaum .
Библиографическая ссылка Levitan, I.B. (1987). Protein phosphorylation and neuronal modulation . In G. Adelman (Ed.), Encyclopedia of neuroscience, Vol. 2. Boston: Birkhauser.
Библиографическая ссылка MacKay, D.G. (1987). The organization of perception and action. New York: Springer-Verlag.
Библиографическая ссылка Mackintosh, N.J. (1974). The psychology of animal learning. New York: Academic Press.
Библиографическая ссылка Mackintosh, N.J. (1983). Conditioning and associative learning. Oxford: Clarendon Press.
Библиографическая ссылка Meyer, J., & Wilson, S. W (Eds.) (1991). Proceedings of the International Workshop on the Simulation of Adaptive Behavior: From animals to animats. Cambridge, MA: MIT Press.
Библиографическая ссылка Michaels, C.F., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ:Prentice-Hall.
Библиографическая ссылка Miller, N.E. (1951). Learnable drives and rewards. In S. S. Stevens (Ed.), Handbook of experimental psychology. New York: Wiley.
Библиографическая ссылка Miller, N.E. (1963). Some reflections on the law of effect produce a new alternative to drive reduction. In M. R. Jones (Ed.), Nebraska Symposium on Motivation . Lincoln: Nebraska University Press .
Библиографическая ссылка Minsky, M.L. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49, 8-30.
Библиографическая ссылка Moore, J.W., Berthier, N.E., & Blazis, D.E.J. (1990). Classical eye-blink conditioning : Brain systems and implementation of a computational model. In M. Gabriel & J. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks. Cambridge, MA: MIT Press.
Библиографическая ссылка Moore, J.W., Desmond, J.E., Berthier, N.E., Blazis, D.E.J., Sutton, R.S., & Barto, A.G. (1986). Simulation of the classically conditioned nictitating membrane response by a neuron-like adaptive element: Response topography, neuronal firing, and interstimulus intervals. Behavioral Brain Research, 21, 143-154.
Библиографическая ссылка Morgan, J.S., Patterson, E.C., & Klopf, A.H. (1990a). A drive-reinforcement model of simple instrumental conditioning. Proceedings of the International Joint Conference on Neural Networks, Vol. 2, 227-232.
Библиографическая ссылка Morgan, J.S., Patterson, E.C., & Klopf, A.H. (1990b). Drive-reinforcement learning : A self-supervised model for adaptive control. Network: Computation in Neural Systems, 1, 439-448.
Библиографическая ссылка Mowrer, O.H. (1956). Two-factor learning theory reconsidered, with special reference to secondary reinforcement and the concept of habit. Psychological Review, 63, 114-128.
Библиографическая ссылка Mowrer, O.H. (1960a). Learning theory and behavior. New York: Wiley. (Krieger edition, 1973.)
Библиографическая ссылка Mowrer, O.H. (1960b). Learning theory and the symbolic processes. New York: Wiley.
Библиографическая ссылка Napier, R.M., Macrae, M., & Kehoe, E.J. (1992). Rapid reacquisition in conditioning of the rabbit's nictitating membrane response. Journal of Experimental Psychology: Animal Behavior Processes, 18(2), 182-192.
Библиографическая ссылка Pavlov, I.P. (1927). Conditioned reflexes. Oxford : Oxford University Press. ( Dover edition, 1960.)
Библиографическая ссылка Plutchik, R., & Kellerman, H. (Eds.) (1986). Emotion: Theory, research, and experience, Vol. 3. New York: Academic Press.
Библиографическая ссылка Powers, W.T. (1973a). Behavior: The control of perception. New York: Aldine.
Библиографическая ссылка Powers, W.T. (1973b). Feedback: Beyond behaviorism. Science, 179, 351-356.
Библиографическая ссылка Powers, W.T. (1978). Quantitative analysis of purposive systems: Some spadework at the foundations of scientific psychology. Psychological Review, 85, 417-435.
Библиографическая ссылка Powers, W.T., Clark, R.K., & McFarland, R.L. (1960a). A feedback model of human behavior: Part 1. Perceptual and Motor Skills, 11, 71-78.
Библиографическая ссылка Powers, W.T., Clark, R.K., & McFarland, R.L. (1960b). A feedback model of human behavior: Part 2. Perceptual and Motor Skills, 11, 309-323.
Библиографическая ссылка Prinz, W. (1987). Ideo-motor action. In H. Heuer & A. F. Sanders (Eds.), Perspectives on perception and action. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Rescorla, R.A. (1977). Pavlovian second-order conditioning: Some implications for instrumental behavior. In H. Davis & H. M. B. Hurwitz (Eds.), Operant Pavlovian interactions. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Rescorla, R.A. (1987). A Pavlovian analysis of goal-directed behavior . American Psychologist, 42, 119-129.
Библиографическая ссылка Rescorla, R.A., & Solomon, R.L. (1967). Two process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychological Review, 74(3), 151-182.
Библиографическая ссылка Roitblat, H.L. (1987). Introduction to comparative cognition. New York: W L. Freeman.
Библиографическая ссылка Roitblat, H.L. (1988). A cognitive action theory of learning. In J. Delacour & J. C. S. Levy (Eds.), Systems with learning and memory abilities . New York: Elsevier.
Библиографическая ссылка Rolls, E.T. (1986). A theory of emotion, and its application to understanding the neural basis of emotion. In Y Oomura (Ed.), Emotions: Neuronal and chemical control. New York: Karger.
Библиографическая ссылка Rosenbaum, D.A. (1987). Hierarchical organization of motor programs. In S. P. Wise (Ed.), Higher brain functions: Recent explorations of the brain's emergent properties. New York: Wiley.
Библиографическая ссылка Schmajuk, N.A., & Urry, D.W. (1992). Avoidance revisited: A neural network approach . Proceedings of the 43rd Annual Meeting of the Psychonomic Society. St. Louis, MO.
Библиографическая ссылка Schneirla, T.C. (1959). An evolutionary and developmental theory of biphasic processes underlying approach and withdrawal. In M. R. Jones (Ed.), Nebraska Symposium on Motivation . Lincoln, NE: University of Nebraska Press.
Библиографическая ссылка Spence, K.W. (1960). Behavior theory and learning: Selected papers . Englewood Cliffs, NJ:Prentice-Hall .
Библиографическая ссылка Sperry, R.W. (1952). Neurology and the mind-brain problem. American Scientist, 40, 291-312.
Библиографическая ссылка Stein, L. (1964). Reciprocal action of reward and punishment mechanisms . In R. G. Heath (Ed.), The role of pleasure in behavior. New York: Harper & Row.
Библиографическая ссылка Stein, L., & Belluzzi, J.D. (1988). Operant conditioning of individual neurons. In M. L. Commons, R. M. Church, J. R. Stellar , & A. R. Wagner (Eds.), Quantitative analyses of behavior, Vol. 7. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Sutton, R.S. (1984). Temporal credit assignment in reinforcement learning . Unpublished doctoral dissertation, University of Massachusetts , Amherst.
Библиографическая ссылка Sutton, R.S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9-44.
Библиографическая ссылка Sutton, R.S. (1991). Reinforcement learning architectures for animats . Proceedings of the International Workshop on the Simulation of Adaptive Behavior: From animals to animats. Cambridge, MA: MIT Press.
Библиографическая ссылка Sutton, R.S., & Barto, A.G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88, 135-170.
Библиографическая ссылка Sutton, R.S., & Barto, A.G. (1987). A temporal-difference model of classical conditioning . Proceedings of the Ninth Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Sutton, R.S., & Barto, A.G. (1990). Time-derivative models of Pavlovian reinforcement . In M. Gabriel & J. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks. Cambridge, MA: MIT Press.
Библиографическая ссылка Sutton, R.S., Barto, A.G., & Williams, R.J. (1991). Reinforcement learning is direct adaptive optimal control. Proceedings of the 1991 American Control Conference, Vol. 3. Boston, MA.
Библиографическая ссылка Tesauro, G. (1986). Simple neural models of classical conditioning . Biological Cybernetics, 55, 187-200.
Библиографическая ссылка Timberlake, W., & Lucas, G.A. (1989). Behavior systems and learning: From misbehavior to general principles. In S. B. Klien & R. R. Mowrer (Eds.), Contemporary learning theories: Instrumental conditioning theory and the impact of biological constraints on learning. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Turvey, M.T. (1977). Preliminaries to a theory of action with reference to vision. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Vaccarino, F.J., Schiff, B.B., & Glickman, S.E. (1989). Biological view of reinforcement . In S. B. Klien & R. R. Mowrer (Eds.), Contemporary learning theories: Instrumental conditioning theory and the impact of biological constraints on learning. Hillsdale, NJ: Lawrence Erlbaum.
Библиографическая ссылка Washburn, S.L., & Harding, R.S. (1970). Evolution of primate behavior. In F O. Schmitt (Ed.), The neurosciences: Second study program. New York: Rockefeller University Press.
Библиографическая ссылка Watkins, C.J.C.H. (1989). Learning from delayed rewards. Unpublished doctoral dissertation, Cambridge University, Cambridge, England.
Библиографическая ссылка Weil, J.L. (1974). A neurophysiological model of emotional and intentional behavior. Springfield, IL: Thomas .
Библиографическая ссылка Werbos, P.J. (1987). Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics, SMC-17(1), 7-20.
Библиографическая ссылка Werbos, P.J. (1990). Consistency of HDP applied to a simple reinforcement learning problem. Neural Networks, 3, 179-189.
Библиографическая ссылка Werbos, P.J. (1992). The cytoskeleton: Why it may be crucial to human learning and to neurocontrol. Nanobiology, 1, 75-95.
Библиографическая ссылка Wiener, N. (1948/1961). Cybernetics or control and communication in the animal and the machine. Cambridge, MA: MIT Press.
Библиографическая ссылка Williams, R.J., & Baird, L.C. (1990). A mathematical analysis of actor-critic architectures for learning optimal control through incremental dynamic programming. Proceedings of the Sixth Yale Workshop on Adaptive and Learning Systems. New Haven, CT: Yale University .
Библиографическая ссылка Wilson, S.W. (1986). Knowledge growth in an artificial animal. In K. S. Narendra (Ed.), Adaptive and learning systems. New York: Plenum.
Библиографическая ссылка Wise, R.A. (1989). The brain and reward. In J. M. Liebman & S. J. Cooper (Eds.), The neuropharmacological basis of reward. Oxford: Clarendon Press.
Библиографическая ссылка Wordworth, R.S. (1918). Dynamic psychology. New York : Columbia University Press.
Библиографическая ссылка Young, P.T. (1955). The role of hedonic processes in motivation. In M. R. Jones (Ed.), Nebraska Symposium on Motivation. Lincoln: University of Nebraska Press.
Библиографическая ссылка Zagon, I.S., McLaughlin, P.J., & Smith, S. (1977). Neural populations in the cerebellum: Estimations from isolated cell nuclei. Brain Research, 127, 279-282.

Скрыть метаданые