Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Guazzelli, Alex
Автор Bota, Mihail
Автор Corbacho, Fernando, J.
Автор Arbib, Michael, A.
Дата выпуска 1998
dc.description O'Keefe and Nadel (1978) distinguish two paradigms for navigation, the "locale system" for map-based navigation and the "taxon (behavioral orientation) system" for route navigation. This article models the taxon system, the map-based system, and their interaction, and argues that the map-based system involves the interaction of hippocampus and other systems.We relate taxes to the notion of an affordance. Just as a rat may have basic taxes for approaching food or avoiding a bright light, so does it have a wider repertoire of affordances for possible actions associated with immediate sensing of its environment. We propose that affordances are extracted by the rat posterior parietal cortex, which guides action selection by the premotor cortex and is influenced also by hypothalamic drive information.The taxon-affordances model (TAM) for taxon-based determination of movement direction is based on models of frog detour behavior, with expectations of future reward implemented using reinforcement learning. The specification of the direction of movement is refined by current affordances and motivational information to yield an appropriate course of action.The world graph (WG) theory expands the idea of a map by developing the hypothesis that cognitive and motivational states interact. This article describes an implementation of this theory, the WG model. The integrated TAM-WG model then allows us to explain data on the behavior of rats with and without fornix lesions, which disconnect the hippocampus from other neural systems.
Издатель Sage Publications
Тема affordance
Тема navigation
Тема motivation
Тема hippocampus
Тема parietal cortex; reinforcement learning
Название Affordances. Motivations, and the World Graph Theory
Тип Journal Article
DOI 10.1177/105971239800600305
Print ISSN 1059-7123
Журнал Adaptive Behavior
Том 6
Первая страница 435
Последняя страница 471
Аффилиация Guazzelli, Alex, University of Southern California
Аффилиация Bota, Mihail, University of Southern California
Аффилиация Corbacho, Fernando, J., University of Southern California
Аффилиация Arbib, Michael, A., University of Southern California
Выпуск 3-4
Библиографическая ссылка Apicella, P., Scarnati, E., Ljungberg, T., & Schultz, W. (1992). Neuronal activity in monkey striatum related to the expectation of predictable environmental events. Journal of Neurophysiology, 68(3), 945-960.
Библиографическая ссылка Arbib, M.A. (1972). The metaphorical brain: Cybernetics as artificial intelligence and brain theory. New York: Wiley-Interscience.
Библиографическая ссылка Arbib, M.A. (1997). From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation. Philosophical Transactions of the Royal Society (London )B, 352(1360), 1429-1436.
Библиографическая ссылка Arbib, M.A., Érdi, P., & Szentágothai, J. (1997). Neural organization: Structure, function, and dynamics. Cambridge, MA: Bradford Books/MIT Press.
Библиографическая ссылка Arbib, M.A., & House, D.H. (1987). Depth and detours: An essay on visually guided behavior. In M. A. Arbib & A. R. Hanson (Eds.), Vision, brain and cooperative computation. Cambridge, MA: Bradford Books/MIT Press.
Библиографическая ссылка Arbib, M.A., & Lieblich, I. (1977). Motivational learning of spatial behavior. In J. Metzler (Eds.), Systems neuroscience . New York: Academic.
Библиографическая ссылка Barto, A.G. (1995). Adaptive critics and the basal ganglia. In J. C. Houk et al. (Eds.), Models of information processing in the basal ganglia. Cambridge, MA: MIT Press.
Библиографическая ссылка Barto, A.G., Richard, S., & Anderson, C.W. (1983). Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 834-846.
Библиографическая ссылка Barto, A.G., & Sutton, R.S. (1981). Landmark learning: An illustration of associative search. Biological Cybernetics, 42, 1-8.
Библиографическая ссылка Burgess, N., Reece, M., & O'Keefe, J. (1994). A model of hippocampal function. Neural Networks, 7, 1065-1081.
Библиографическая ссылка Chen, L.L., Lin, L.H., Barnes, C.A., & McNaughton, B.L. (1994b). Head-direction cells in the rat posterior cortex: 2. Contributions of visual and ideothetic information to the directional firing. Experimental Brain Research , 101(1), 24-34.
Библиографическая ссылка Chen, L.L., Lin, L.H., Green, E.J., Barnes, C.A., & McNaughton, B.L. (1994a). Head-direction cells in the rat posterior cortex: 1. Anatomical distribution and behavioral modulation. Experimental Brain Research 101(1), 8-23.
Библиографическая ссылка Collett, T. (1982). Do toads plan routes? A study of detour behavior of B. viridis. Journal of Comparative Physiology [A], 146, 261-271.
Библиографическая ссылка Corbacho, F.J., & Arbib, M.A. (1995). Learning to detour. Adaptive Behavior 3(4), 419-468.
Библиографическая ссылка Dayan, P. (1991). Navigating through temporal difference. In R. P. Lippmann et al. (Eds.), Neural Information Processing Systems, Vol. 3. San Mateo: Morgan Kaufmann.
Библиографическая ссылка Dominey, P.F., & Arbib, M.A. (1992). A cortico-subcortical model for generation of spatially accurate sequential saccades. Cerebral Cortex, 2, 135-175.
Библиографическая ссылка Etienne, A.S., Maurer, R., & Seguinot, V. (1996). Path integration in mammals and its interaction with visual landmarks. Journal of Experimental Biology, 199(pt 1), 201-209.
Библиографическая ссылка Fagg, A.H. (1996). A computational model of the cortical mechanisms involved in primate grasping. Unpublished doctoral thesis,University of Southern California.
Библиографическая ссылка Gibson, J.J. (1966). The senses considered as perceptual systems. London: Allen and Unwin.
Библиографическая ссылка Goodridge, J.P., & Taube, J.S. (1995). Preferential use of the landmark navigational system by head direction cells in rats. Behavioral Neuroscience , 109(1), 49-61.
Библиографическая ссылка Hirsh, R., Leber, B., & Gillman, K. (1978). Fornix fibers and motivational states as controllers of behavior: A study stimulated by the contextual retrieval theory. Behavioral Biology, 22, 463-478.
Библиографическая ссылка Hull, C.L. (1943). Principles of behavior. New York: Appleton-Century-Crofts.
Библиографическая ссылка Ingle, D. (1980). The frog's detection of stationary objects following lesions of the pretectum. Behavioral Brain Research, 3, 151-173.
Библиографическая ссылка Klopf, A.H. (1972). Brain function and adaptive systems—a heterostatic theory (Air Force Cambridge Research Laboratory Research Report No. AFCRL-72-0164) . Bedford, MA: Air Force Cambridge Research Laboratory. (A summary appears in Proceedings of the International Conference on Systems, Man, and Cybernetics , 1974.)
Библиографическая ссылка Knierim, J.J., Kudrimoti, H.S., & McNaughton, B.L. (1995). Place cells, head direction cells, and the learning of landmark stability. Journal of Neuroscience, 15(3, pt 1), 1648-1659.
Библиографическая ссылка Knierim, J.J., McNaughton, B.L., Duffield, C., & Bliss, J. (1993). On the binding of hippocampal place fields to the inertial orientation system. Society for Neuroscience Abstracts, 19, 795.
Библиографическая ссылка Kolb, B., Buhrmann, K., McDonald, R., & Sutherland, R.J. (1994). Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cerebral Cortex 4(6), 664-680.
Библиографическая ссылка Lavoie, A.M., & Mizumori, S.J. (1994). Spatial, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats. Brain Research, 638, 157-168.
Библиографическая ссылка Lieblich, I., & Arbib, M.A. (1982). Multiple representations of space underlying behavior . The Behavioral and Brain Sciences, 5, 627-659.
Библиографическая ссылка Markus, E.J., Barnes, C.A., McNaughton, B.L., Gladden, V.L., & Skaggs, W.E. (1994). Spatial information content and reliability of hippocampal CA1 neurons: Effects of visual input. Hippocampus , 4(4), 410-421.
Библиографическая ссылка Markus, E.J., Qin, Y.L., Leonard, B., Skaggs, W.E., McNaughton, B.L., & Barnes, C.A. (1995). Interactions between location and task affect the spatial and directional firing of hippocampal neurons. Journal of Neuroscience, 15, 7079-7094.
Библиографическая ссылка McNaughton, B.L., Barnes, C.A., Gerrard, J.L., Gothard, K., Jung, M.W., Knierim, J.J., Kudrimoti, H., Qin, Y., Skaggs, W.E., Suster, M., & Weaver, K.L. (1996). Deciphering the hippocampal polyglot: The hippocampus as a path integration system. Journal of Experimental Biology , 199(pt 1), 173-185.
Библиографическая ссылка McNaughton, B.L., Barnes, C.A., & O'Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats . Experimental Brain Research, 52(1), 41-49.
Библиографическая ссылка McNaughton, B.L., Knierim, J.J., & Wilson, M.A. (1994b). Vector encoding and the vestibular foundations of spatial cognition: Neurophysiological and computational mechanisms. In M. Gazzaniga (Ed.), The cognitive neurosciences. Boston: MIT Press .
Библиографическая ссылка McNaughton, B.L., Leonard, B., & Chen, L. (1989). Cortico-hippocampal interactions and cognitive mapping: A hypothesis based on reintegration of the parietal and inferotemporal pathways for visual processing. Psychobiology, 17, 230-235.
Библиографическая ссылка McNaughton, B.L., Mizumori, S.J., Barnes, C.A., Leonard, B.J., Marquis, M., & Green, E.J. (1994a). Cortical representation of motion during unrestrained spatial navigation in the rat. Cerebral Cortex, 4(1), 27-39.
Библиографическая ссылка Mirenowicz, J., & Schultz, W. (1996). Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature, 379, 449-451.
Библиографическая ссылка Mishkin, M., Ungerleider, L.G., & Mack, K.A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neuroscience, 6, 414-417.
Библиографическая ссылка Mittelstaedt, M.L., & Mittelstaedt, H. (1980). Homing by path integration in a mammal. Naturwissenchaft, 67, 566-567.
Библиографическая ссылка Morris, R.G., Garrud, P., Rawlins, J.N., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.
Библиографическая ссылка Morris, R.G.M., Hagan, J.J., & Rawlins, J. N. P. (1986). Allocentric spatial learning by hippocampectomised rats: A further test of "spatial mapping" and "working memory" theories of hippocampal function. Quarterly Journal of Experimental Psychology, 38B, 365-395.
Библиографическая ссылка Muller, R.U., Bostock, E., Taube, J.S., & Kubie, J.L. (1994). On the directional firing properties of hippocampal place cells. Journal of Neuroscience, 14, 7235-7251.
Библиографическая ссылка Muller, R.U., Kubie, J.L., Bostock, E.M., Taube, J.S., & Quirk, G.J. (1991). Spatial firing correlates of neurons in the hippocampal formation of freely moving rats. In J. Paillard (Ed.), Brain and space (pp. 296-333). Oxford: Oxford University Press.
Библиографическая ссылка Muller, R.U., Kubie, J.L., & Ranck, J.B., Jr. (1987). Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. Journal of Neuroscience, 7,1935-1950.
Библиографическая ссылка O'Keefe, J. (1983). Spatial memory within and without the hippocampal system. In W Seifert (Ed.), Neurobiology of the hippocampus New York: Academic.
Библиографическая ссылка O'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381, 425-428.
Библиографическая ссылка O'Keefe, J., and Conway, D.H. (1980). On the trail of the hippocampal engram. Physiological Psychology, 8, 229-238.
Библиографическая ссылка O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely moving rat. Brain Research, 34, 171-175.
Библиографическая ссылка O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon.
Библиографическая ссылка Olton, D.S., Becker, J.T., & Handelmann, G.E. (1980). Hippocampal function: Working memory or cognitive mapping? Physiological Psychology , 8, 239-246.
Библиографическая ссылка Packard, M.G., & McGaugh, J.L. (1992). Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behavioral Neuroscience, 106(3), 439-446.
Библиографическая ссылка Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review , 100(2), 163-182.
Библиографическая ссылка Quirk, G.J., Muller, R.U., & Kubie, J.L. (1990). The firing of hippocampal place cells in the dark depends on the rat's recent experience. Journal of Neuroscience , 10(6), 2008-2017.
Библиографическая ссылка Risold, P.Y., & Swanson, L.W. (1995). Evidence for a hypothalamo-thalamocortical circuit mediating pheromonal influences on eye and head movements. Proceedings of the National Academy of Sciences of the United States of America, 92(9), 3898-3902.
Библиографическая ссылка Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey II. Area F5 and the control of distal movements. Experimental Brain Research, 71, 491-507.
Библиографическая ссылка Sakata, H., Shibutani, H., Ito, Y., Tsurugai, K., Mine, S., & Kusunoki, M. (1994). Functional properties of rotation-sensitive neurons in the posterior parietal association cortex of the monkey. Experimental Brain Research, 101(2), 183-202.
Библиографическая ссылка Samsonovich, A. (1997). Attractor map theory of the hippocampal representation of space. Unpublished doctoral thesis, University of Arizona .
Библиографическая ссылка Samsonovich, A., & McNaughton, B.L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. Journal of Neuroscience, 1715,5900-5920.
Библиографическая ссылка Save, E., & Moghaddam, M. (1996). Effects of lesions of the associative parietal cortex on the acquisition and use of spatial memory in egocentric and allocentric navigation tasks in the rat. Behavioral Neuroscience, 110(1), 74-85.
Библиографическая ссылка Schenk, F., & Morris, R.G.M. (1985). Dissociation between components of spatial memory in rats after recovery from the effects of retrohippocampal lesions. Experimental Brain Research, 58, 11-28.
Библиографическая ссылка Schmajuk, N.A. (1990). Role of the hippocampus in temporal and spatial navigation : An adaptive neural network. Behavioral Brain Research, 39(3), 205-229.
Библиографическая ссылка Schmajuk, N.A., & Blair, H.T. (1993). Place learning and the dynamics of spatial navigation: A neural network approach. Adaptive Behavior, 1, 355-387.
Библиографическая ссылка Schmajuk, N.A., & Thieme, A.D. (1992). Purposive behavior and cognitive mapping : A neural network model. Biological Cybernetics, 67, 165-174.
Библиографическая ссылка Schultz, W., Romo, R., Ljungberg, T., Mirenowicz, J., Hollerman, J.R., & Dickinson, A. (1995). Reward-related signals carried by dopamine neurons . In J. R. Houk et al. (Eds.), Models of information processing in the basal ganglia. Cambridge, MA: MIT Press.
Библиографическая ссылка Shibata, H., & Kato, A. (1993). Topographic relationship between anteromedial thalamic nucleus neurons and their cortical terminal fields in the rat. Neuroscience Research, 17(1), 63-69.
Библиографическая ссылка Sutherland, R.J., & Rodriguez, A.J. (1989). The role of the fornix/fimbria and some related subcortical structures in place learning and memory. Behavioral Brain Research, 32(3), 265-277.
Библиографическая ссылка Sutton, S.S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9-44.
Библиографическая ссылка Swanson, L.W., & Mogenson, G.J. (1981). Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Research Reviews, 3, 1-34.
Библиографическая ссылка Taube, J.S., Muller, R.U., & Ranck, J.B., Jr. (1990a). Head-direction cells recorded from the postsubiculum in freely moving rats: II. Effects of environmental manipulations. Journal of Neuroscience, 10(2), 436-447.
Библиографическая ссылка Taube, J.S., Muller, R.U., & Ranck, J.B., Jr. (1990b). Head-direction cells recorded from the postsubiculum in freely moving rats: I. Description and quantitative analysis. Journal of Neuroscience, 10, 420-435.
Библиографическая ссылка Taube, J.S., Jr. (1995). Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. Journal of Neuroscience , 15(1, pt 1), 70-86.
Библиографическая ссылка Thinus-Blanc, C. (1996). Animal spatial cognition: Behavioral and brain approach. Singapore : World Scientific .
Библиографическая ссылка Toates, F. (1986). Motivational systems. Cambridge , Engl.: Cambridge University Press.
Библиографическая ссылка Tolman, E.C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189-208.
Библиографическая ссылка Touretzky, D.S., & Redish, A.D. (1996). Theory of rodent navigation based on interacting representations of space. Hippocampus, 6, 247-270.
Библиографическая ссылка Wiener, S.I. (1993). Spatial and behavioral correlates of striatal neurons in rats performing a self-initiated navigation task. Journal of Neuroscience, 13(9), 3802-3817.

Скрыть метаданые