Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор So, A T P
Автор Chow, T.T.
Автор Chan, W.L.
Автор Tse, W.L.
Дата выпуска 1994
dc.description Modem air conditioning systems for commercial buildings commonly employ the concept of a 'central all-air system' and the variable air volume (VAV) system in particular is widely used in Hong Kong and elsewhere other places around the world for energy conservation. In the lengthy wet summer season of Hong Kong, centralised air handling units (AHUs) dehumidify and cool down the appropriate mixture of return air and outdoor fresh air to feed a ducting network to various VAV boxes. A good controller for the AHUs is extremely desirable from both human comfort and energy saving points of view. In this paper, a simulation model for a practical air handling system is presented. Its behaviour under a conventional system of PID controllers is studied. A new controller based on fuzzy logic has been developed where all the parameters including input variables and actuating variables are represented as fuzzy subsets with carefully assigned membership functions. Such a controller is expected to directly replace the conventional PID controllers with identical input and output points. Based on an expert system developed from the recommendations of experienced human operators on air conditioning control, decision rules for proper control actions are laid down. Computer simulation as detailed in this paper has proved that such a fuzzy logic-based controller is superior to a conventional, cvell-tuned PID controller in at least three aspects. Fuzzy logic-based control is more robust since slight changes in the values of parameters do not greatly affect the performance compared with detuned PID control. The response rate of fuzzy logic-based control is faster when there is a sudden change in the environment. Energy saving is another merit of using fuzzy logic-based control.
Издатель Sage Publications
Название Fuzzy air handling system controller
Тип Journal Article
DOI 10.1177/014362449401500204
Print ISSN 0143-6244
Журнал Building Services Engineering Research & Technology
Том 15
Первая страница 95
Последняя страница 105
Аффилиация So, A T P, City Polytechnic of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Аффилиация Chow, T.T., City Polytechnic of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Аффилиация Chan, W.L., City Polytechnic of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Аффилиация Tse, W.L., City Polytechnic of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Выпуск 2
Библиографическая ссылка Brandt S.G. and Shavit G. Simulations of the PID algorithm for direct digital control application Proc. Workshop on HVAC Controls, Modelling and Simulation (Altlanta, GA: Georgia Institute of Technology ) (1984)
Библиографическая ссылка Jota F.G. and Dexter A.L. Self-tuning control of a chilled water cooling-coil: Simulated and experimental assessment Proc. 2nd Int. Conf on System Simulation in Buildings, Liège, Belgium pp577-599 (Brussels : Commission of European Communities ) ( 1986)
Библиографическая ссылка John R.W. and Dexter A.L. Intelligent buildings: Adaptive and self-tuning controls Proc. CIBSE Symp. Advances in Air Conditioning pp107-120 (London : Chartered Institution of Building Services Engineers ) (1987)
Библиографическая ссылка Jota F.G. and Dexter A.L. Self-tuning control of an air-handling plant Proc. Int. Conf on Control 88 pp41-46 (London : Institute of Electrical Engineers) ( 1988)
Библиографическая ссылка Hsu Y.Y. and Cheng C.H. Design of fuzzy power system stabilisers for multi-machine power systems IEE Proc. C. Gen. Trans. Distrib. 137(3) 233-238( 1990)
Библиографическая ссылка Carrier Air-conditioning Company Handbook of air-conditioning system design (New York: McGraw-Hill ) (1972)
Библиографическая ссылка Kickert W J M and Mamdani E.H. Analysis of a fuzzy logic controller Fuzzy Sets and Systems 1(1) 29-44 (1978)
Библиографическая ссылка Huang S. and Nelson R.M. A PID-law-combining fuzzy controller for hvac applications ASHRAE Trans. 97 (2) 768-774 (1991)
Библиографическая ссылка Shoureshi R. and Rahmani K. Derivation and application of an expert fuzzy optimal control system Fuzzy Sets and Systems 49(2) 93-101 (1992)
Библиографическая ссылка Dexter A.L. and Hawkins M.E. The use of simulation data to design rule-based controllers for HVAC systems Proc. International Building Performance Simulation Association Conf., BS'93, Adelaide pp421-427 (1993)
Библиографическая ссылка King R.E. and Karonis F.C. Multi-level expert control of a large-scale industrial process in Gupta M M and Yamakawa T (eds.) Fuzzy computing theory, hardware and applications pp323-340 (Amsterdam: North Holland) ( 1988)
Библиографическая ссылка Sugeno M., Murofushi T., Mori T., Tatematsu T. and Tanaka J. Fuzzy algorithmic control of a model car by oral instructions Fuzzy Sets and Systems 32(2) 207-219 (1989)
Библиографическая ссылка Ono H., Ohnishi T. and Terada Y. Combustion control of refuse incineration plant by fuzzy logic Fuzzy Sets and Systems 32(2) 193-206 (1989)
Библиографическая ссылка Pedrycz W (ed.) Fuzzy control and fuzzy systems (New York: Wiley ) (1989)
Библиографическая ссылка King P.Y. and Mamdani E.J. The application of fuzzy control systems to industrial processes in Gupta M M, Saridis G N and Gaines B R (eds.) Fuzzy automata and decision process 321-330 ( Amsterdam : North-Holland) (1977 )
Библиографическая ссылка Yang H., Siler W., and Buckley J.J.Fuzzy control theory-A non-linear caseAutomatica26(3) 513-520 (1990)
Библиографическая ссылка So A T P, Chan W.L. and Tse C.T. Fuzzy logic based automatic capacitor switching for reactive power compensation Proc. Applications of Neural Netunrks to Power Systems '93, Yokohama pp41-46 (IEEE)(1993)

Скрыть метаданые