Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Kim, S.K.
Автор Chronopoulos, A.T.
Дата выпуска 1992
dc.description Main memory accesses for shared-memory systems or global communications (synchronizations) in message passing systems decrease the computation speed. In this paper, the standard Arnoldi algorithm for approxi mating a small number of eigenvalues, with largest (or smallest) real parts for nonsymmetric large sparse ma trices, is restructured so that only one synchronization point is required; that is, one global communication in a message passing distributed-memory machine or one global memory sweep in a shared-memory ma chine per each iteration is required. We also introduce an s-step Arnoldi method for finding a few eigenvalues of nonsymmetric large sparse matrices. This method generates reduction matrices that are similar to those generated by the standard method. One iteration of the s-step Arnoldi algorithm corresponds to s itera tions of the standard Arnoldi algorithm. The s-step method has improved data locality, minimized global communication, and superior parallel properties. These algorithms are implemented on a 64-node NCUBE/7 Hypercube and a CRAY-2, and performance results are presented.
Издатель Sage Publications
Название An Efficient Parallel Algorithm for Extreme Eigenvalues of Sparse Nonsymmetric Matrices
Тип Journal Article
DOI 10.1177/109434209200600411
Print ISSN 1094-3420
Журнал International Journal of High Performance Computing Applications
Том 6
Первая страница 407
Последняя страница 420
Аффилиация Kim, S.K., DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA 55455
Аффилиация Chronopoulos, A.T., DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA 55455
Выпуск 4
Библиографическая ссылка Aykanat, C., Ozguner, F., Ercal, F., and Sadayappan, P.1988. Iterative algorithms for solution of large sparse systems of linear equations on Hypercubes. IEEE Trans. Comput.37 (12):1554-1568.
Библиографическая ссылка Chronopoulos, A.T., and Gear, C.W.1989a. S-step iterative methods for symmetric linear systems . J. Comput. Appl. Math. 25:153-168.
Библиографическая ссылка Chronopoulos, A.T., and Gear, C.W.1989b. On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy . Parallel Comput. 11:37-52.
Библиографическая ссылка Dave, A.K., and Duff, I.S.1987. Sparse matrix calculations on the CRAY-2. Parallel Comput.5:55-64.
Библиографическая ссылка Dongarra, J.J., and Sorensen, D.C.1986. Linear algebra on high-performance computer. Conf. Parallel Computing1985 proceed. M. Feilmeier et al. eds. Elsevier Pub . 1986.
Библиографическая ссылка Golub, G.H., and Van Loan, C.F.1989. MATRIX Computations. Baltimore : Johns Hopkins University Press, pp. 219-225.
Библиографическая ссылка Gustafson, J.L., Montry, G.R., and Benner, R.E.1988. Development of parallel methods for a 1024-processor hypercube . SIAM J. Sci. Statist. Comput. 9(4).
Библиографическая ссылка Kim, S.K., and Chronopoulos, A.T.1991. A class of Lanczos algorithms implemented on parallel computers. Parallel Comput.17. Meurant , G.1987. Multitasking the conjugate gradient method on the CRAY X-MP/48 . Parallel Comput. 5:267-280.
Библиографическая ссылка McBryan, O.A., and van de Velde, E.F.1987. Matrix and vector operations on hypercube parallel processors. Parallel Comput.5:117-125.
Библиографическая ссылка Ni, L.M., King, C.T., and Prins, P.1987. Parallel algorithm design considerations for hypercube multiprocessors. Proc. of the 1987 International Conf. on Parallel Processing.
Библиографическая ссылка Ranka, S., Won, Y., and Sahni, S.1988. Programming the NCUBE Hypercube. Tech. Rep. CSci No. 88-13. Minneapolis: University of Minnesota.
Библиографическая ссылка Ruhe, A.1982. The two sided Arnoldi algorithm for nonsymmetric eigenvalue problems. Springer-VerlagLecture Notes in Math . 973:104-120.
Библиографическая ссылка Saad, Y.1980. Variation on the Arnoldi's method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl.34:269-295.
Библиографическая ссылка Saad, Y.1984. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math. Comp.42:567-588.
Библиографическая ссылка Saad, Y.1985. Partial eigensolutions of large nonsymmetric matrices. Research Report YALUE/ DCS/RR-397.
Библиографическая ссылка Saylor, P.E.1988. Leapfrog variants of iterative methods for linear algebraic equations. J. Comput. Appl. Math.24:169-193.
Библиографическая ссылка Wilkinson, J.H.1965. The algebraic eigenvalue problem. New York: Oxford University Press.

Скрыть метаданые