Автор |
Yanxi Liu |
Автор |
Popplestone, Robin |
Дата выпуска |
1994 |
dc.description |
The surface contacts between solids are always associated with a set of symmetries of the contacting surfaces. These symmetries form a group known as the symmetry group of the surface.In this article we develop a group theoretic formalization for describing surface contact between solids. In particular we define (1) primitive and compound features of a solid, (2) a topological characterization of these features, and (3) the symmetry groups of primitive and compound features.The symmetry group of a feature is a descriptor of the fea ture that is at once abstract and quantitative. We show how to use group theory concepts to describe the exact relative motion (position) of solids under surface contacts, which can be either rigid or articulated. The central result of this article is to prove the following:1. When primitive features of a solid are mutually dis tinct, 1-congruent or 2-congruent, the symmetry group of a compound feature can be expressed in terms of the intersection of the symmetry groups of its primitive features.2. When two solids have surface contact, their rela tive positions can be expressed as a coset of their common symmetry group, which in turn can be ex pressed in terms of the intersections of the symmetry groups of the primitive features involved in this con tact.These results show that using group theory to formalize surface contacts is a general approach for specifying spatial relationships and forms a sound basis for the automation of robotic task planning. One advantage of this formulation is its ability to express continuous motions between two surface- contacting solids in a computational manner and to avoid combinatorics arising from multiple relationships, especially from discrete symmetries in the assembly parts and their fea tures. At the end of this article, a geometric representation for symmetry groups and an efficient group intersection algorithm using characteristic invariants are described. |
Издатель |
Sage Publications |
Название |
A Group Theoretic Formalization of Surface Contact |
Тип |
Journal Article |
DOI |
10.1177/027836499401300205 |
Print ISSN |
0278-3649 |
Журнал |
The International Journal of Robotics Research |
Том |
13 |
Первая страница |
148 |
Последняя страница |
161 |
Аффилиация |
Yanxi Liu, Computer Science Department University of Massachusetts Amherst, MA 01003 |
Аффилиация |
Popplestone, Robin, Computer Science Department University of Massachusetts Amherst, MA 01003 |
Выпуск |
2 |
Библиографическая ссылка |
Ambler, A.P., and Popplestone, R.J.1975. Inferring the positions of bodies from specified spatial relationships. Artificial Intelligence6:157-174. |
Библиографическая ссылка |
Angeles, J.1990. Rational Kinematics. New York : Springer-Verlag. |
Библиографическая ссылка |
Brown, C.M.1982. PADL2: A technical summary. IEEE Computer Graphics Applications2(2):69-84. |
Библиографическая ссылка |
Bruyninckx, H., and Schutter, J.D.1992. Model-based specification and control of compliant motion . In Tutorial M6, 1992 IEEE International Conference on Robotics and Automation, Nice, France. |
Библиографическая ссылка |
Croom, F.H.1978. Basic Concepts of Algebraic Topology. New York: Springer-Verlag. |
Библиографическая ссылка |
De Fazio, R.L., and Whitney, D.E.1987. Simplified generation of all mechanical assembly sequences . IEEE J. Robot. Automation RA-3(6):640-658. |
Библиографическая ссылка |
Fu, K.S., Gonzalez, R.C., and Lee, C.S.G.1987. Robotics: Control, Sensing, Vision, and Intelligence . New York: McGraw-Hill. |
Библиографическая ссылка |
Hervé, J.M.1977. Analyse structurelle des mécanismes par groupe des déplacements . Mechanism Machine Theory 13(4):437-450. |
Библиографическая ссылка |
Homem de Mello, L.S.1989. Task Sequence Planning for Robotic Assembly. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA. |
Библиографическая ссылка |
Hutchinson, S.A., and Kak, A.C.1990. SPAR: A planner that satisfies operational and geometric goals in uncertain environments. Artificial Intelligence Magazine11(1):30-61. |
Библиографическая ссылка |
Liu, Y.1990. Symmetry Groups in Robotic Assembly Planning. Ph.D. thesis , University of Massachusetts, Amherst, MA. |
Библиографическая ссылка |
Liu, Y.1993a. A geometric approach for denoting and intersecting TR subgroups of the Euclidean group. Technical Report 93-44, Computer Science Department, University of Massachusetts, Amherst, MA. Submitted for publication. |
Библиографическая ссылка |
Liu, Y.1993b. On symmetry groups for oriented surfaces. Technical Report 93-17, Computer Science Department, University of Massachusetts , Amherst, MA. Submitted for publication. |
Библиографическая ссылка |
Liu, Y., and Popplestone, R.J.1989. Assembly planning from solid models. In IEEE International Conference on Robotics and Automation . Washington, DC: IEEE Computer Society Press. |
Библиографическая ссылка |
Liu, Y., and Popplestone, R.J.1990. Symmetry constraint inference in assembly planning. In Eighth National Conference onArtificial Intelligence. Boston, MA. |
Библиографическая ссылка |
Liu, Y., and Popplestone, R.J.1991. Symmetry groups in analysis of assembly kinematics. In IEEE International Conference on Robotics and Automation. Washington, DC: IEEE Computer Society Press. |
Библиографическая ссылка |
Liu, Y., and Popplestone, R.J.1992. From characteristic invariants to stiffness matrices. In IEEE International Conference on Robotics and Automation. Washington, DC: IEEE Computer Society Press. |
Библиографическая ссылка |
Lozano-Pérez, T.1982. Task planning. In Brady, M., Hollerbach, J. M., Johnson, T. L., Lozano-Pérez, T., and Mason, U. T. (eds.): Robot Motion: Planning and Control. Cambridge, MA: MIT Press. |
Библиографическая ссылка |
Lozano-Pérez, T., Jones, J.L., Mazer, E., O'Donnell, B.A., Grimson, W.E.L., Toumassoud, P., and Lanusse, A.1987. Handey: A robot system that recognizes, plans, and manipulates . In IEEE International Conference on Robotics and Automation , Washington, DC: IEEE Computer Society Press, pp. 843-849. |
Библиографическая ссылка |
MacLane, andBirkhoff, G.1979. Algebra. 2nd ed. New York: Macmillan. |
Библиографическая ссылка |
Mason, M.T.1982. Compliance and force control for computer controlled manipulators . In Brady, M., Hollerbach, J. M., Johnson, T. L., Lozano-Pérez, T., and Mason, M. T. (eds.): Robot Motion: Planning and Control. Cambridge, MA: MIT Press. |
Библиографическая ссылка |
Miller, W. Jr.1972. Symmetry Groups and Their Applications: New York: Academic Press. |
Библиографическая ссылка |
Moise, E.E.1977. Geometric Topology in Dimensions 2 and 3. New York: Springer-Verlag. |
Библиографическая ссылка |
Popplestone, R.J.1984. Group theory and robotics. In Brady, M., and Paul, R. (eds.): Robotics Research, The First Int. Symp. Cambridge, MA: MIT Press. |
Библиографическая ссылка |
Popplestone, R.J., Ambler, A.P., and Bellos, I.1980. An interpreter for a language for describing assemblies . Artificial Intelligence 14(1):79-107. |
Библиографическая ссылка |
Tchoń, K.1991. Differential topology of the inverse kinematic problem for redundant robot manipulators. Int. J. Robot. Res.10(5):492-504. |
Библиографическая ссылка |
Thomas, F., and Torras, C.1988. A group-theoretic approach to the computation of symbolic part relations. IEEE J. Robot. Automation4(6):622-634. |
Библиографическая ссылка |
Thomas, F., and Torras, C.1992. Inferring feasible assemblies from spatial constraints . IEEE Trans. Robot. Automation 8(2):228, 239. |
Библиографическая ссылка |
Whitney, D.E., DeFazio, T.L., Gustavson, R.E., Graves, S.C., Abell, T., Cooprider, C., and Pappu, S.1989. Tools for strategic product design. In NSF Engineering Design Research Conference, College of Engineering , University of Massachusetts, Amherst, MA, pp. 581-595. |
Библиографическая ссылка |
Wolter, J.D.1988. On the Automatic Generation of Plans for Mechanical Assembly. Ph.D. thesis, University of Michigan. |