Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Seltzer, Michael H.
Дата выпуска 1993
dc.description Many recent applications of the two-level hierarchical model (HM) have focused on drawing inferences concerning fixed effects-that is, structural parameters in the Level 2 model that capture the way Level 1 parameters (e.g., children's rates of cognitive growth, within-school regression coefficients) vary as a function of Level 2 characteristics (e.g., children's home environments and educational experiences; school policies, practices, and compositional characteristics). Under standard assumptions of normality in the HM, point estimates and intervals for fixed effects may be sensitive to outlying Level 2 units (e.g., a child whose rate of cognitive growth is unusually slow or rapid, a school at which students achieve at an unusually high level given their background characteristics, etc.). A Bayesian approach to studying the sensitivity of inferences to possible outliers involves recalculating the marginal posterior distributions of parameters of interest under assumptions of heavy tails, which has the effect of downweighting extreme cases. The goal is to study the extent to which posterior means and intervals change as the degree of heavy-tailedness assumed increases. This strategy is implemented in the HM setting via a new Monte Carlo technique termed Gibbs sampling (Gelfand & Smith, 1990; cf Tanner & Wong, 1987) and is illustrated through reanalyses of the data from a study of vocabulary growth in children (Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991). The Gibbs sampling approach presented builds on the work of Dempster, Laird, and Rubin (1980); Little and Rubin (1987); and Lange, Little, and Taylor (1989) concerning the use of the t distribution in robust statistical estimation. Extensions of this approach are discussed in the final section of the article.
Издатель Sage Publications
Тема hierarchical models
Тема sensitivity analysis
Тема Gibbs sampling
Название Sensitivity Analysis for Fixed Effects in the Hierarchical Model: A Gibbs Sampling Approach
Тип Research Article
DOI 10.3102/10769986018003207
Print ISSN 1076-9986
Журнал Journal of Educational Statistics
Том 18
Первая страница 207
Последняя страница 235
Аффилиация Seltzer, Michael H., University of California, Los Angeles
Выпуск 3
Библиографическая ссылка Aitkin, M, and N Longford (1986). Statistical modelling issues in school effectiveness studies. Journal of the Royal Statistical Society, Series A, 149, 1-43.
Библиографическая ссылка Bock, RD (1989). Multilevel analysis of educational data. New York: Academic.
Библиографическая ссылка Box, GEP (1979). Robustness in the strategy of scientific model building. In RL Launer and GN Wilkinson (Eds.), Robustness in statistics (pp. 201-236). New York: Academic.
Библиографическая ссылка Box, GEP (1980). Sampling and Bayes' inference in scientific modelling and robustness (with discussion). Journal of the Royal Statistical Society, Series A, 143, 383-430.
Библиографическая ссылка Box, GEP, and GC Tiao (1973). Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley.
Библиографическая ссылка Bryk, AS, and SW Raudenbush (1987). Application of hierarchical linear models to assessing change. Psychological Bulletin, 101, 147-158.
Библиографическая ссылка Bryk, AS, SW Raudenbush, M Seltzer, and R Congdon (1988). An introduction to HLM: Computer program and user's guide. Chicago: University of Chicago, Department of Education.
Библиографическая ссылка de Leeuw, J, and I Kreft (1986). Random coefficient models for multilevel analysis. Journal of Educational Statistics, 11, 57-85.
Библиографическая ссылка Dempster, AP (1987). Comment on article by Tanner and Wong. Journal of the American Statistical Association, 82, 541.
Библиографическая ссылка Dempster, AP, NM Laird, and DB Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1-38.
Библиографическая ссылка Dempster, AP, NM Laird, and DB Rubin (1980). Iteratively reweighted least squares. In PR Kirshnaiah (Ed.), Multivariate analysis V (pp. 35-57). Amsterdam, The Netherlands: North-Holland.
Библиографическая ссылка Dempster, AP, DB Rubin, and RK Tsutakawa (1981). Estimation in covariance component models. Journal of the American Statistical Association, 76, 341-353.
Библиографическая ссылка Gelfand, AE, S Hills, A Racine-Poon, and AFM Smith (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85, 972-985.
Библиографическая ссылка Gelfand, AE, and AFM Smith (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398-409.
Библиографическая ссылка Gelman, A, and D Rubin (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472.
Библиографическая ссылка Goldstein, H (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73, 43-56.
Библиографическая ссылка Goldstein, H (1987). The application of data augmentation in estimating variance components in multilevel data. In Multilevel models in educational and social research. New York: Oxford University Press.
Библиографическая ссылка Hogg, R (1979). Statistical robustness: One view of its use in applications today. American Statistician, 33, 108-115.
Библиографическая ссылка Huttenlocher, J, W Haight, AS Bryk, M Seltzer, and T Lyons (1991). Early vocabulary growth: Relation to language input and gender. Developmental Psychology, 27, 236-248.
Библиографическая ссылка Kasim, R (1993). .. Unpublished doctoral dissertation, Michigan State University, East Lansing.
Библиографическая ссылка Laird, N, and J Ware (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
Библиографическая ссылка Lange, K, R Little, and J Taylor (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association, 84, 881-896.
Библиографическая ссылка Lee, V, and A Bryk (1989). A multilevel model of the social distribution of high school achievement. Sociology of Education, 62, 172-192.
Библиографическая ссылка Leonard, T, J Hsu, and K Tsui (1989). Bayesian marginal inference. Journal of the American Statistical Association, 84, 1051-1058.
Библиографическая ссылка Lindley, DV (1983). Comment on article by Morris. Journal of the American Statistical Association, 78, 61-62.
Библиографическая ссылка Lindley, DV, and AFM Smith (1972). Bayes estimates for the linear model. Journal of the Royal Statistical Society, Series B, 34, 1-41.
Библиографическая ссылка Little, RAJ, and DB Rubin (1987). Statistical analysis with missing data. New York: Wiley.
Библиографическая ссылка Longford, N (1987). A fast-scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested effects. Biometrika, 74, 817-827.
Библиографическая ссылка Morris, CN (1983). Parametric empirical Bayes inference, theory and applications. Journal of the American Statistical Association, 78, 47-65.
Библиографическая ссылка Morris, CN (1987). Comment on article by Tanner and Wong. Journal of the American Statistical Association, 82, 542-543.
Библиографическая ссылка Mosteller, F, and J Tukey (1977). Data analysis and regression. Reading, MA: Addison-Wesley.
Библиографическая ссылка Novick, M, and P Jackson (1974). Statistical methods for educational and psychological research. NY: McGraw-Hill.
Библиографическая ссылка Rabash, J, R Prosser, and H Goldstein (1989). ML2: Software for two-level analysis, user's guide. London: London University, Institute of Education.
Библиографическая ссылка Rachman-Moore, D, and R Wolfe (1984). Robust analysis of a nonlinear model for multilevel educational survey data. Journal of Educational Statistics, 9, 277-293.
Библиографическая ссылка (1991). Assessing the impact of a decentralised initiative: The British technical and vocational education initiative. In Raffe, D, SW Raudenbush and JD Willms (Eds.), Schools, classrooms, and pupils: International studies of schooling from a multilevel perspective (pp. 149-166). San Diego: Academic.
Библиографическая ссылка Raudenbush, SW (1988). Educational applications of hierarchical linear models: A review. Journal of Educational Statistics, 13, 85-116.
Библиографическая ссылка Relles, D, and W Rogers (1977). Statisticians are fairly robust estimators of location. Journal of the American Statistical Association, 72, 107-111.
Библиографическая ссылка Rubin, DB (1980). Using empirical Bayes techniques in the Law School Validity Studies. Journal of the American Statistical Association, 75, 801-827.
Библиографическая ссылка Rubin, DB (1981). Estimation in parallel randomized experiments. Journal of Educational Statistics, 6, 377-400.
Библиографическая ссылка Seltzer, M (1991). The use of data augmentation in fitting hierarchical models to educational data.. Unpublished doctoral dissertation, University of Chicago.
Библиографическая ссылка Seltzer, M, W Wong, and A Bryk (1992). Bayesian inference in applications of hierarchical models: Issues and methods. Los Angeles: University of California. (UCLA Statistics Series, No. 114).
Библиографическая ссылка Smith, AFM (1973). A general Bayesian linear model. Journal of the Royal Statistical Society, Series B, 35, 61-75.
Библиографическая ссылка Tanner, MA, and WH Wong (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-550.
Библиографическая ссылка Waternaux, C, N Laird, and J Ware (1989). Methods for the analysis of longitudinal data: Blood-lead concentration and cognitive development. Journal of the American Statistical Association, 84, 33-41.
Библиографическая ссылка Zeger, S, and M Karim (1991). Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American Statistical Association, 86, 79-86.

Скрыть метаданые