Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Roth, Philip, L.
Автор Switzer, Fred, S.
Дата выпуска 1995
dc.description Researchers have examined various techniques to solve the problem of missing data. Simple techniques have included listwise deletion, pairwise deletion, mean substitution, regression imputation and hot-deck imputation. Past research suggests that regression imputation and pairwise deletion generally result in less dispersion around true score values while listwise deletion results in more dispersion around true scores. Unfortunately, this research spent much less time examining whether the various techniques lead to overestimation or underestimation of the true values of various statistics. The present study utilized a Monte Carlo Analysis to simulate an HRM research setting to evaluate missing data techniques. Pairwise deletion resulted in the least dispersion around true scores and least average error of any missing data technique for calculating correlations. Implications for use of these techniques and future missing data research were explored.
Издатель Sage Publications
Название A Monte Carlo Analysis of Missing Data Techniques in a HRM Setting
Тип Journal Article
DOI 10.1177/014920639502100511
Print ISSN 0149-2063
Журнал Journal of Management
Том 21
Первая страница 1003
Последняя страница 1023
Аффилиация Roth, Philip, L., Clemson University
Аффилиация Switzer, Fred, S., Clemson University
Выпуск 5
Библиографическая ссылка Afifi, A.A. & Elashoff, R.M. (1969). Missing observations in multivariate statistics III: Large sample analysis of simple linear regression. American Statistical Association Journal, 64: 337-359.
Библиографическая ссылка Baker, K., Harris, P. & O’Brien, J. (1989). Data fusion: An appraisal and experimental evaluation. Journal of Marker Research Society, 31(2): 153-212.
Библиографическая ссылка Beale, E.M.L. & Little, R.J.A. (1975). Missing values in multivariate analysis. Journal of the Royal Statistical Society, B37(1): 129-145.
Библиографическая ссылка Buck, S.F. (1960). A method of estimation of missing values in multivariate data suitable for use with electronic computer. Journal of the Royal Statistical Society, B22: 302-306.
Библиографическая ссылка Chan, L.S. & Dunn, O.J. (1972). The treatment of missing values in discriminant analysis-I. The sampling experiment. Journal of the American Statistical Association, 67(338): 473-477.
Библиографическая ссылка Cohen, J. & Cohen, P. (1983). Applied multiple regression/correlational analysis for the behavioral sciences. Hillsdale, NJ: Earlbaum.
Библиографическая ссылка DeSarbo, W.S., Green, P.E. & Carroll, J.D. (1986). Missing data in product-concept testing. Decision Sciences, 17: 163-185.
Библиографическая ссылка Dillman, D.A. (1983). Mail and other self-administered questionnaires. Pp. 359-378 in P.H. Rossi, J.D. Wright & A.B. Anderson (Eds.), Handbook of survey research. New York: Academic Press.
Библиографическая ссылка Ford, B.L. (1983). An overview of Hot-Deck procedures. Pp. 185-207 in W.G. Madow, I. Olkin & D.B. Rubin (Eds.), Incomplete data in sample surveys. Vol. 2: Theory and bibliographies. New York: Academic Press.
Библиографическая ссылка Frane, J.W. (1976). Some simple procedures for handling missing data in multivariate analysis. Psychometrika, 41(3): 409-415.
Библиографическая ссылка Gleason, T.C. & Staelin, R. (1975). A proposal for handling missing data. Psychometrika, 40(2): 229-252.
Библиографическая ссылка Graham, J.W. & Donaldson, S.W. (1993). Evaluating interventions with differential attrition: The importance of nonresponse mechanisms and use of follow-up data. Journal of Applied Psychology, 78(l): 119-128.
Библиографическая ссылка Griffiths, P. & Hill, I.D. (1985). Applied statistics algorithms. London: The Royal Statistical Society.
Библиографическая ссылка Heberlein, T.A. & Baumgartner, R. (1978). Factors affecting response rates to mailed questionnaires: A quantitative analysis of the published literature. American Sociological Review, 43: 447-462.
Библиографическая ссылка Heneman, R.L. (1986). The relationship between supervisory ratings and results-oriented measures of performance. Personnel Psychology, 39: 811-826.
Библиографическая ссылка Hunter, J.E. (1994). Commentary of Roth, Switzer, Campion &Jones. In F. L. Schmidt (Chair), Advances in construct and criterion related validity research. Symposium presented at the Ninth Annual Conference for Industrial and Organizational Psychology, Nashville, TN.
Библиографическая ссылка Hunter, J.E. & Hunter, R.F. (1984). The validity and utility of alternative predictors of job performance. Psychological Bulletin, 96: 72-99.
Библиографическая ссылка Kim, J.O. & Curry, J. (1977). The treatment of missing data in multivariate analysis. Sociological Methods & Research, 6(2): 215-241.
Библиографическая ссылка Lepkowski, J.M., Landis, J.R. & Stehouwer, S.A. (1987). Strategies for the analysis of imputed data from a sample survey: The national medical care utilization and expenditure survey. Medical Cure, 25(8): 705-716.
Библиографическая ссылка Little, R.J.A. (1988). Missing data adjustments in large surveys. Journal of Business & Economic Statistics, 6(3): 296-297.
Библиографическая ссылка Little, R.J.A. & Rubin, D.B. (1987). Statistical analysis with missing data. New York: John Wiley & Sons.
Библиографическая ссылка Malhotra, N.K. (1987). Analyzing marketing research data with incomplete information on the dependent variable. Journal of Marketing Research, 24: 74-84.
Библиографическая ссылка Raymond, M.R. (1986). Missing data in evaluation research. Evaluation & the Health Profession, 9(4): 395-420.
Библиографическая ссылка Raymond, M.R. & Roberts, D.M. (1987). A comparison of methods for treating incomplete data in selection research. Education and Psychological Measurement, 47: 13-26.
Библиографическая ссылка Rea, L.M. & Parker, R.A. (1992). Designing and conducting survey research: A comprehensive guide. San Francisco: Jossey-Bass.
Библиографическая ссылка Rizvi, M. H. (1983). Hot-deck procedures: Introduction. Pp. 000-000 in W. G. Madow & I. Olkin (Eds.), Incomplete data in sample surveys, Vol. 3: Proceedings of the symposium. NewYork: Academic Press.
Библиографическая ссылка Roth, P.L. (1994). Missing data: A conceptual review for applied psychologists. Personnel Psychology, 47: 537-560.
Библиографическая ссылка Schmidt, F.L, Hunter, J.E. & Urry, V.W. (1976). Statistical power in criterion-related validation studies, Journal of Applied Psychology, 61(4): 473-485.
Библиографическая ссылка Vinchur, A.J., Schippmann, J.S. & Switzer, F.S.III. (1994). Predicting sales success: A review and meta-analysis, manuscript under review
Библиографическая ссылка Young, W.Y., Houston, J.S., Harris, J.H., Hoffman, R.G. & Wise, L.L. (1990). Large-scale predictor validation in Project A: Data collection procedures and data base preparation. Personnel Psychology, 43(2): 301-311.

Скрыть метаданые