Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Zhang, Guigen
Автор Latour, Robert, A.
Дата выпуска 1997
dc.description A 3D model of fiber microbuckling assuming a square packed fiber array has been developed and analyzed under the assumption of fiber in-plane microbuckling. In this model, the fiber equilibrium equation is first developed as a function of uniaxial loading, material properties, and fiber/matrix interfacial stresses. By utilizing 3D boundary element modeling, the 3D stress distribution along the fiber/matrix interface is determined. The interfacial stresses obtained from the 3D boundary element analysis are then incorporated into the 3D equilibrium equation of fiber microbuckling to provide a closedform analytical solution of the 3D compressive fiber strength in unidirectional composites. Results show that the in-plane shear stress component is predominant, while one of the two out-of-plane stress components, which cannot be captured by a 2D model, is not negligible. Furthermore it is found that the in-plane interfacial shear stress is strongly dependent upon fiber spacing. These results indicate that the results for a 2D model are quite different from those of the 3D model. Therefore, the 3D model of compressive behavior of unidirectional composites is necessary in order to properly model the real interfacial stress distribution in a unidirectional composite subjected to axial compressive load. Because of the strong dependence of interfacial shear stress upon fiber spacing, more accurate calculation of in-plane interfacial shear stresses and theoretical fiber microbuckling strength will result from a 2D model if fiber spacing in the model is set to match that of a 3D model for a given 3D model-based fiber volume fraction.
Издатель TECHNOMIC PUBLISHING CO., INC.
Тема microbuckling
Тема compressive strength
Тема 3D model
Тема boundary element modeling
Тема interfacial stress
Название A Three-Dimensional Micromechanical Model of the Compressive Behavior of Unidirectional FRP Composites
Тип Journal Article
DOI 10.1177/089270579701000206
Print ISSN 0892-7057
Журнал Journal of Thermoplastic Composite Materials
Том 10
Первая страница 173
Последняя страница 184
Аффилиация Zhang, Guigen, Department of Bioengineering, Clemson University, Clemson, SC 29634
Аффилиация Latour, Robert, A., Department of Bioengineering and Material Science, and Engineering Program, Clemson University, Clemson, SC 29634
Выпуск 2
Библиографическая ссылка 1. Lager, J. R. and R. R. June. 1969. "Compressive Strength of Boron Epoxy Composites,"J. Compos. Mater., 1:48-56.
Библиографическая ссылка 2. Rosen, B. W.1965. "Mechanics of Composite Strengthening," in Fiber Composite Materials, Metals Park, OH: American Society for Metals, pp. 37-75.
Библиографическая ссылка 3. Sadowsky, M. A., S. L. Pu and M. A. Hussain. 1967. "Buckling of Microfibers,"J. Appl. Mech., (Dec.): 1011-1016.
Библиографическая ссылка 4. Steif, P. S.1987. 'An Exact Two Dimensional Approach to Fiber Microbuckling,"Int. J. Solids Structure, 9:1235-1246.
Библиографическая ссылка 5. Waas, A. M., C. D. Babcock, Jr. and W. G. Knauss. 1990. 'A Mechanical Model for Elastic Fiber Microbuckling,"Transactions of the ASME, J. Appl. Mech., 57:138-149.
Библиографическая ссылка 6. Zhang, G. and R. A. Latour, Jr.1994. "An Analytical and Numerical Analysis of Fiber Microbuckling,"Composite Science and Technology, 51:95-109.
Библиографическая ссылка 7. Zhang, G. and R. A. Latour, Jr.1993. "FRP Composite Compressive Strength and Its Dependence upon Interfacial Bond Strength, Fiber Misalignment, and Matrix Nonlinearity,"Journal of Thermoplastic Composite Materials, 6:298-311.
Библиографическая ссылка 8. "Hercules Carbon Fiber Type AS4,"1989, Product Data Sheet, Hercules Inc.
Библиографическая ссылка 9. ICI Fiberite Material Handbook, 1991, ICI Fiberite, Tempe, AZ.

Скрыть метаданые