Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Agrawal, S.K.
Автор Xu, X.
Дата выпуска 1997
dc.description This paper deals with optimization of a class of linear time-varying dynamic systems with n states and m control inputs commanded to move between two fixed states in a prescribed final time. Using a conventional procedure with Lagrange multipliers, it is well known that the optimal solution must satisfy 2n first-order linear differential equations in the state and Lagrange multiplier variables. Due to the specific nature of boundary conditions with states given at the two end times, the two-point boundary value problem must be solved iteratively using shooting methods, that is, there is no closed-form quick procedure to obtain the solution of the problem. In this paper, a new procedure for dynamic optimization of this problem is presented that does not use Lagrange multipliers. In this new procedure, it is shown that for a dynamic system with n = pm, where p is an integer, the optimal solution must satisfy m 2p-order differential equations. Due to the absence of Lagrange multipliers, the higher order differential equations can be solved efficiently using classical weighted residual methods.
Издатель Sage Publications
Тема Optimization
Тема time-varying dynamic systems
Тема transformations
Тема optimal control
Название A New Procedure for Optimization of a Class of Linear Time-Varying Dynamic Systems
Тип Journal Article
DOI 10.1177/107754639700300401
Print ISSN 1077-5463
Журнал Journal of Vibration and Control
Том 3
Первая страница 379
Последняя страница 396
Аффилиация Agrawal, S.K., Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
Аффилиация Xu, X., Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
Выпуск 4
Библиографическая ссылка Agrawal, S.K. and Veeraklaew, T., 1996, "Higher-order method for dynamic optimization of a class of linear time-invariant," J. Dyn. Sys. Meas. Control .
Библиографическая ссылка Brebbia, C.A., 1978, The Boundary Element Method for Engineers, Pentech, London.
Библиографическая ссылка Bryson, A.E. and Ho, Y.C., 1975, Applied Optimal Control, Hemisphere , Washington, DC.
Библиографическая ссылка Fletcher, C.A.J., 1984, Computational Galerkin Methods, Springer-Verlag , New York.
Библиографическая ссылка Kirk, D.E., 1970, Optimal Control Theory: An Introduction, Prentice Hall, Englewood Cliffs, NJ.

Скрыть метаданые