Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Matchar, David, B.
Автор Simel, David, L.
Автор Geweke, John, F.
Автор Feussner, John, R.
Дата выпуска 1990
dc.description The evaluation of a diagnostic test when the reference standard fails to establish a diagnosis in some patients is a common and difficult analytical problem. Conventional operating char acteristics, derived from a 2 x 2 matrix, require that tests have only positive or negative results, and that disease status be designated definitively as present or absent. Results can be displayed in a 2 x 3 matrix, with an additional column for undiagnosed patients, when it is not possible always to ascertain the disease status definitively. The authors approach this problem using a Bayesian method for evaluating the 2 x 3 matrix in which test operating characteristics are described by a joint probability density function. They show that one can derive this joint probability density function of sensitivity and specificity empirically by applying a sampling algorithm. The three-dimensional histogram resulting from this sampling pro cedure approximates the true joint probability density function for sensitivity and specificity. Using a clinical example, the authors illustrate the method and demonstrate that the joint probability density function for sensitivity and specificity can be influenced by assumptions used to interpret test results in undiagnosed patients. This Bayesian method represents a flexible and practical solution to the problem of evaluating test sensitivity and specificity when the study group includes patients whose disease could not be diagnosed by the reference standard. Key words: Bayesian analysis; test operating characteristics; probability density functions. (Med Decis Making 1990;10:102-111)
Издатель Sage Publications
Название A Bayesian Method for Evaluating Medical Test operating Characteristics When Some Patients' Conditions Fail to Be Diagnosed by the Reference Standard
Тип Journal Article
DOI 10.1177/0272989X9001000203
Print ISSN 0272-989X
Журнал Medical Decision Making
Том 10
Первая страница 102
Последняя страница 111
Выпуск 2
Библиографическая ссылка Begg CB, Greenes RAAssessment of diagnostic tests when disease verification is subject to selection bias. Biometrics.1983;39:207-15.
Библиографическая ссылка Begg CB, Greenes RA, Iglewicz B.The influence of uninterpretability on the assessment of diagnostic tests . J Chronic Dis. 1986;39:575-84.
Библиографическая ссылка Begg CBBiases in the assessment of diagnostic tests. Stat Med.1987;6:411-32.
Библиографическая ссылка Greenes RA, Begg CBAssessment of diagnostic technologies: methodology for unbiased estimation from samples of selectively verified patients. Invest Radiol.1985;20:251-6.
Библиографическая ссылка Panzer RJ, Suchman AL, Griner P.Workup bias in prediction research. Med Decis Making.1987;7:115-9.
Библиографическая ссылка Ransohoff DA , Feinstein AR Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med. 1978;299:926-30.
Библиографическая ссылка Simel DL, Feussner JR, Delong ER, Matchar DBIntermediate, indeterminate and uninterpretable diagnostic test results . Med Decis Making. 1987;7:107-14.
Библиографическая ссылка Zellner A.An introduction to Bayesian inference in econometrics. New York, Wiley, 1971;38-40.
Библиографическая ссылка Johnson NL, Kotz S.Distributions in statistics: continuous uni-variate distributions—2 . New York, Houghton Mifflin, 1970.
Библиографическая ссылка Hull RD, Hirsh J., Carter CJ, et al. Pulmonary angiography, ventilation lung scanning, and venography for clinically suspected pulmonary embolism with abnormal perfusion lung scan . Ann Intern Med. 1983;98:891-9.
Библиографическая ссылка Doubilet P. , Begg CB, Weinstein MC, Braun P., McNeil BJ Probabilistic sensitivity analysis using Monte Carlo simulation: a practical approach. Med Decis Making. 1985;5:157-77.
Библиографическая ссылка Critchfield GC, Willard KEProbabilistic sensitivity analysis of decision trees using Monte Carlo simulation. Med Decis Making.1986;6:85-92.

Скрыть метаданые