Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Baxt, William, G.
Дата выпуска 1994
dc.description An artificial neural network trained to identify the presence of myocardial infarction has been shown to function with a high degree of accuracy. The effects on network diagnosis of some of the clinical input variables used by this network have previously been shown to be dis tributed over two distinct maxima. Analysis of the basis for this distribution by studying the specific patterns in which these variables had significantly different impacts on network diagnosis revealed that the differential impacts were due to the contexts in which the variables whose effects were bimodally distributed were placed. These contexts were defined by the values of the other input data used by the network. In a number of instances, the clinical relationships implied by these associations were divergent from prior knowledge about factors predictive of myocardial infarction. One implication of these findings is that this network, which has been shown to perform with a high degree of diagnostic accuracy, may be doing so by identifying relationships between inputted information that are divergent from accepted teaching. Key words: neural network; clinical decisions; nonlinear association. (Med Decis Making 1994;14:217-222)
Издатель Sage Publications
Название A Neural Network Trained to Identify the Presence of Myocardial Infarction Bases Some Decisions on Clinical Associations That Differ from Accepted Clinical Teaching
Тип Journal Article
DOI 10.1177/0272989X9401400303
Print ISSN 0272-989X
Журнал Medical Decision Making
Том 14
Первая страница 217
Последняя страница 222
Выпуск 3
Библиографическая ссылка Widrow G., Hoff ME1960Adaptive Switching Circuits Institute of Radio Engineering Western Electric Show and Convention. Convention Record, Part4, pp 96-104.
Библиографическая ссылка Rumelhart DE, Hinton GE, Williams RJLearning internal representations by error propagation. In: Rumelhart DE, McClelland JL, eds. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press, 1986;318-64.
Библиографическая ссылка McClelland JL , Rumelhart DE Training hidden units. In: McClelland JL, Rumelhart DE, eds. Explorations in Parallel Distributed Processing . Cambridge, MA: MIT Press, 1988;121-60.
Библиографическая ссылка Weigend AS, Huberman BA, Rumelhart DEPredicting the future: a connectionist approach. Int J Neural Systems.1990;1:193-209.
Библиографическая ссылка Eberhart RC, Dobbins RW, Hutton LVNeural network paradigm comparisons for appendicitis diagnoses. In: Proceedings of the Fourth Annual IEEE Symposium on Computer-Based Medical Systems1991;298-304.
Библиографическая ссылка Mulsant GH, Servan-Schreiber E.A connectionist approach to the diagnosis of dementia. In: Symposium on Computer Applications in Medical Care 1988 Proceedings: 12th Annual Symposium, Washington, DC.1988;12:245-50.
Библиографическая ссылка Bounds DG, Lloyd PJ, Mathew BGA comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders. Neural Networks.1990;3:583-91.
Библиографическая ссылка Yoon YO, Brobst RW, Bergstresser PR, Peterson LLA desktop neural network for dermatology diagnosis. J Neural Network Computation. Summer 1989;43-52.
Библиографическая ссылка Baxt WGUse of an artificial neural network for data analysis in clinical decision-making: the diagnosis of acute coronary occlusion. Neural Computation.1990;2:480-9.
Библиографическая ссылка Harrison RF, Marshall SJ, Kennedy RLThe early diagnosis of heart attacks: a neurocomputational approach. In: Proceedings of the International Joint Conference on Neural Networks, Seattle, WA. 1991;1:1—5.
Библиографическая ссылка Baxt WGUse of an artificial neural network for the diagnosis of myocardial infarction . Ann Intern Med. 1991;115:843-8.
Библиографическая ссылка Goldman L., Cook EF, Brand DA, et al. A computer protocol to predict myocardial infarction in emergency department patients with chest pain. N Engl J Med.1988;318:797-803.
Библиографическая ссылка Baxt WGAnalysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Ann Emerg Med.1992;21:1439-44.
Библиографическая ссылка Pozen MW, Stechmiller JK, Voight GCPrognostic efficacy of early clinical categorization of myocardial infarction patients. Circulation.1977;56:816-9.
Библиографическая ссылка Pozen MW, D'Agostino RB, Mitchell JB, et al. The usefulness of a predictive instrument to reduce inappropriate admissions to the coronary care unit. Ann Intern Med.1980;92:238-42.
Библиографическая ссылка Goldman L., Weinberg M., Weisberg M., et al. A computer-derived protocol to aid in the diagnosis of emergency room patients with acute chest pain. N Engl J Med.1982;307:588-96.
Библиографическая ссылка Patrick EA, Margolin G., Sanghvi V., Uthurusamy R.Pattern recognition applied to early diagnosis of heart attacks. In: Proceedings of the IEEE 1976 Systems, Man, and Cybernetics Conference , Washington, DC, November 1-3, 1976 , pp. 403-6.
Библиографическая ссылка Patrick EA, Margolin G., Sanghvi V., Uthurusamy R.Pattern recognition applied to early diagnosis of heart attacks. In: Proceedings of the 1977 International Medical Information Processing Conference (MEDINFO)Toronto, Ontario, Canada, August 9-12, 1977:203-7.
Библиографическая ссылка Pozen MW, D'Agostino RB, Selker HP, Sytkowski PA, Hood WB Jr.A predictive instrument to improve coronary-care-unit admission practices in acute ischemic heart disease: a prospective multicenter clinical trialN Engl J Med.1984;310:1273-8.
Библиографическая ссылка Lee TH, Rouan GW, Weisberg MC, et al. Sensitivity of routine clinical criteria for diagnosing myocardial infarction with 24 hours of hospitalization. Ann Intern Med.1987;106:181-6.
Библиографическая ссылка Tierney MW, Roth BJ, Psaty B., et al. Predictors of myocardial infarction in emergency room patients . Crit Care Med. 1985;13:526— 31.
Библиографическая ссылка Lee TH, Cook EF, Weisberg M., Sargent RK, Wilson C., Goldman L.Acute chest pain in the emergency ward: identification and examination of low-risk patients. Arch Intern Med.1985;145:65-9.
Библиографическая ссылка Lee TH, Rouan GW, Wesiberg MC, et al. Clinical characteristics and natural history of patients with acute myocardial infarction sent home from the emergency room. Am J Cardiol.1987;60:219-24.
Библиографическая ссылка Dannenberg AL, Shapiro AR, Fries JFEnhancement of clinical predictive ability by computer consultation. Meth Inf Med.1979 ;18:10-4.
Библиографическая ссылка Baxt WGA neural network trained to identify the presence of myocardial infarction bases diagnostic decision on nonlinear relationships between input variables . Neural Comput Applic. 1993;1:176-82.

Скрыть метаданые