Автор |
Huntley, Hugh, E. |
Автор |
Wineman, Alan, S. |
Автор |
Rajagopal, K., R. |
Дата выпуска |
1996 |
dc.description |
Recently, a constitutive theory for rubber-like materials has been developed by which stress arises from different micromechanisms at different levels of deformation. For small deformations, the stress is given by the usual theory of rubber elasticity. As the deformation increases, there is scission of some junctions of the macromolecular microstructure. Junctions then reform to generate a new microstructure. The constitutive equation allows for continuous scission of the original junctions and formation of new ones as deformation increases. The macromolecular scission causes stress reduction, termed chemorheological relaxation. The new macromolecular structure results in permanent set on release of external load.The present work considers a hollow sphere composed of such a material, also assumed to be incom-pressible and isotropic, which undergoes axisymmetric deformation under radial traction. There develops an outer zone of material with the original microstructure and an inner zone of material having undergone macromolecular scission, separated by a spherical interface whose radius increases with the deformation. The stress distribution, radial load-expansion response, residual stress distribution, and permanent set on release of traction are determined. It is found that a residual state of high compressive stress can arise in a thin layer of material at the inner boundary of the sphere. |
Издатель |
Sage Publications |
Название |
Chemorheological Relaxation, Residual Stress, and Permanent Set Arising in Radial Deformation of Elastomeric Hollow Spheres |
Тип |
Journal Article |
DOI |
10.1177/108128659600100301 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
1 |
Первая страница |
267 |
Последняя страница |
299 |
Аффилиация |
Huntley, Hugh, E., Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128 |
Аффилиация |
Wineman, Alan, S., Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 |
Аффилиация |
Rajagopal, K., R., Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 |
Выпуск |
3 |
Библиографическая ссылка |
[1] Rajagopal, K. R. and Wineman, A. S.: A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes. Int. J. Plast., 8, 385-395 (1992). |
Библиографическая ссылка |
[2] Tobolsky, A. V.: Properties and Structure of Polymers, John Wiley, New York, 1960. |
Библиографическая ссылка |
[3] Wineman, A. S. and Rajagopal, K. R.: On a constitutive theory for materials undergoing microstructural changes. Arch. Mech., 42, 1, 53-75 (1990). |
Библиографическая ссылка |
[4] Huntley, H. E.: Applications of a constitutive equation for microstructural change in polymers, Ph.D. dissertation, The University of Michigan, 1992. |
Библиографическая ссылка |
[5] Wineman, A. S. and Huntley, H. E.: Numerical simulation of the effect of damage induced softening on the inflation of a circular rubber membrane. Int. J. Solids Structures, 31, 23, 3295-3313 (1994). |
Библиографическая ссылка |
[6] Huntley, H. E., Wineman, A. S., and Rajagopal, K. R.: Load maximum behavior in the inflation of hollow spheres of incompressible material with strain-dependent damage, unpublished manuscript, 1995. |
Библиографическая ссылка |
[7] Rajagopal, K. R. and Srinivasa, A. R.: On the inelastic behavior of solids, part I: Twinning. Int. J. Plast., 11, 653-678 (1995a). |
Библиографическая ссылка |
[8] Rajagopal, K. R. and Srinivasa, A. R.: Inelastic behavior of materials, part II: Energetics associated with discontinuous twinning, unpublished manuscript, 1995b. |
Библиографическая ссылка |
[9] Spencer, A.J.M.: Continuum Mechanics, Longman Mathematical Texts, New York, 1980. |
Библиографическая ссылка |
[10] Rajagopal, K. R.: On constitutive relations and material modelling in continuum mechanics, Report #6, Institute for Applied and Computational Mechanics, The University of Pittsburgh, 1995. |
Библиографическая ссылка |
[11] Carroll, M. M.: Controllable deformations of incompressible simple materials. Int. J. Eng. Sci., 5, 515-525 (1967). |
Библиографическая ссылка |
[12] Carroll, M. M.: Pressure maximum behavior in inflation of incompressible elastic hollow spheres and cylinders. Quarterly of Applied Mathematics, 45, 1, 141-154 (1987). |
Библиографическая ссылка |
[13] Hart-Smith, L. J.: Elasticity parameters for finite deformations of rubber-like materials. Zeitschriftftir Angewandte Mathematik und Physik, 17, 608-625 (1966). |
Библиографическая ссылка |
[14] Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-With Examples. Appl. Mech. Rev., 40, 12, 1699-1734 (1987). |
Библиографическая ссылка |
[15] Sue, H.-J. and Yee, A. F.: Toughening mechanisms in a multi-phase alloy of nylon 6,6/polyphenylene oxide. J. Mat. Sci., 24, 1447-1457 (1989). |
Библиографическая ссылка |
[16] Alexander, H.: A constitutive relation for rubber-like materials. Int. J. Eng. Sci., 6, 549-563 (1968). |
Библиографическая ссылка |
[17] Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd ed., Oxford University Press, Oxford, UK, 1975. |
Библиографическая ссылка |
[18] Horgan, C. O. and Pence, T. J.: Void nucleation in tensile dead-loading of a composite incompressible nonlinearly elastic sphere. J. Elast., 21, 61-82 (1989a). |
Библиографическая ссылка |
[19] Horgan, C. O. and Pence, T. J.: Cavity formation at the center of a composite incompressible nonlinearly elastic sphere. Trans. ASME, 56, 302-308 (1989b). |
Библиографическая ссылка |
[20] Chou-Wang, M.-S. and Horgan, C. O.: Void nucleation and growth for a class of incompressible nonlinearly elastic materials. Int. J. Solids Structures, 25, 11, 1239-1254 (1989). |