Автор |
Paullet, Joseph, E. |
Автор |
Polignone, Debra, A. |
Дата выпуска |
1996 |
dc.description |
The boundary-value problem (BVP) resulting from the equations of nonlinear elastostatics for torsion of a circular cylinder for a class of general Blatz-Ko materials is considered. Using a topological shooting argument, the existence of a solution to this BVP is proven, and two-sided a priori bounds implying that the tube must contract radially are given. Previous studies have considered special cases, that is, slightly compressible materials or nearly isochoric deformations. The present results place no such restrictions on compressibility or strain. |
Издатель |
Sage Publications |
Название |
Existence and a Priori Bounds for the Finite Torsion Solution for a Class of General Blatz-Ko Materials |
Тип |
Journal Article |
DOI |
10.1177/108128659600100303 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
1 |
Первая страница |
315 |
Последняя страница |
326 |
Аффилиация |
Paullet, Joseph, E., Division of Science, Penn State Erie, The Behrend College, Station Road, Erie, PA 16563 |
Аффилиация |
Polignone, Debra, A., Department of Mathematics, University of Tennessee, Knoxville, TN 37996 |
Выпуск |
3 |
Библиографическая ссылка |
[1] Rivlin, R. S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Phil. Trans. Roy. Soc. A, 241, 379-397 (1948). |
Библиографическая ссылка |
[2] Rivlin, R. S.: A note on the torsion of an incompressible highly-elastic cylinder. Proc. Camb. Phil. Soc., 45, 485-487 (1949). |
Библиографическая ссылка |
[3] Ericksen, J. L.: Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. and Phys., 34, 126-128 (1955). |
Библиографическая ссылка |
[4] Green, A. E.: Finite elastic deformation of compressible isotropic bodies. Proc. Roy. Soc. A, 227, 271-278 (1955). |
Библиографическая ссылка |
[5] Green, A. E. and Adkins, J. E.: Large Elastic Deformations, Oxford University Press, Oxford, 1960. |
Библиографическая ссылка |
[6] Polignone, D. A. and Horgan, C. O.: Pure torsion of compressible nonlinearly elastic circular cylinders. Quart. Appl. Math., 49, 591-607 (1991). |
Библиографическая ссылка |
[7] Ogden, R. W.: Non-linear Elastic Deformations, Ellis Horwood, Chichester, UK, 1984. |
Библиографическая ссылка |
[8] Green, A. E. and Wilkes, E. W.: A note on the extension and torsion of a circular cylinder of a compressible elastic isotropic material. Quart. J. Mech. Appl. Math., 6, 240-249 (1953). |
Библиографическая ссылка |
[9] Blackburn, W. S. and Green, A. E.: Second-order torsion and bending of isotropic elastic cylinders. Proc. Roy. Soc. A, 240, 408-422 (1957). |
Библиографическая ссылка |
[10] Truesdell, C. and Noll, W.: The non-linear field theories of mechanics, in Handbuch der Physik III, ed., S. Flfigge, Springer, Berlin1965. |
Библиографическая ссылка |
[11] Shield, R. T.: An energy method for certain second-order effects with application to torsion of elastic bars under tension. J. Appl. Mech., 47, 75-81 (1980). |
Библиографическая ссылка |
[12] Levinson, M.: Finite torsion of slightly compressible rubberlike circular cylinders. Int. J. Non-Linear Mech., 7, 445-463 (1972). |
Библиографическая ссылка |
[13] Faulkner, M. G. and Haddow, J. B.: Nearly isochoric finite torsion of a compressible isotropic elastic circular cylinder. Acta Mechanica, 13, 245-253 (1972). |
Библиографическая ссылка |
[14] Ogden, R. W.: Nearly isochoric elastic deformations: An application to rubberlike solids. J. Mech. Phys. Solids, 26, 37-57 (1978). |
Библиографическая ссылка |
[15] Blatz, P. J. and Ko, W. L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol., 6, 223-251 (1962). |
Библиографическая ссылка |
[16] Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues - with examples. Appl. Mech. Reviews, 40, 1699-1734 (1987). |
Библиографическая ссылка |
[17] Horgan, C. O. and Polignone, D. A.: A note on the pure torsion of a circular cylinder for a compressible nonlinearly elastic material with nonconvex strain energy. J. Elasticity, 37, 167-178 (1995). |
Библиографическая ссылка |
[18] Wineman, A. S. and Waldron Jr., W. K.: Normal stress effects induced during circular shear of a compressible non-linear elastic cylinder. Int. J. Non-Linear Mech., 30, 323-339 (1995). |
Библиографическая ссылка |
[19] Paullet, J. E., Polignone, D. A., and Warne, P. G.: Existence and uniqueness of azimuthal shear solutions in compressible isotropic nonlinear elasticity, manuscript submitted for publication. |
Библиографическая ссылка |
[20] Horgan, C. O.: Remarks on ellipticity for the generalized Blatz-Ko constitutive model for a compressible nonlinearly elastic solid. J. Elasticity, 42, 165-176 (1996). |