Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Haughton, David, M.
Дата выпуска 1996
dc.description We consider the eversion problem for highly compressible hyperelastic thick-walled cylinders. We focus attention on two features of such problems that are not adequately described by standard analysis. We investigate, first, closure of the cavity for sufficiently thick tubes and, second, the instability of relatively thin tubes. We find that the closure of the cavity can be ascribed to the fact that actual foam cylinders behave differently in tension and compression. However, the instability of thinner cylinders seems to be governed by some other mechanism. In the course of the analysis, we show how exact solutions to the equilibrium equation for the eversion problem can be generated. Unfortunately such solutions are not compatible with the boundary conditions.
Издатель Sage Publications
Название Further Results for the Eversion of Highly Compressible Elastic Cylinders
Тип Journal Article
DOI 10.1177/108128659600100401
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 1
Первая страница 355
Последняя страница 367
Аффилиация Haughton, David, M., Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, Scotland
Выпуск 4
Библиографическая ссылка [1] Haughton, D.M. and Off A. (in press): On the eversion of compressible elastic cylinders, Int. J. Solids Struct.
Библиографическая ссылка [2] Haughton, D.M. and Orr A.: On the eversion of incompressible elastic cylinders, Int. J. Non-Linear Mechanics, 30, 81-95 (1995).
Библиографическая ссылка [3] Truesdell, C.: Some challenges offered to analysis by rational thermodynamics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, pp. 496-540, ed., G. M. De La Penha and L. A. Medeiros, North-Holland, Amsterdam, 1978.
Библиографическая ссылка [4] Orr, A.: Eversion and Bifurcation of Elastic Cylinders, Ph.D. Thesis, University of Glasgow, 1996.
Библиографическая ссылка [5] Aron, M.: On a class of plane radial deformations of compressible non-linearly elastic solids, IM.A. J. Appl. Maths., 52, 289-296 (1994).
Библиографическая ссылка [6] Murphy, J.G. (in press): A family of solutions describing plane strain cylindrical inflation in finite compressible elasticity, J. Elasticity.
Библиографическая ссылка [7] Green, A.E. and Mkrtichian, J. Z.: Elastic solids with different moduli in tension and compression, J. of Elasticity, 7, 369-386 (1977).
Библиографическая ссылка [8] Green, A.E. and Mkrtichian, J.Z.: Torsion and extension of a tube with different moduli in tension and compression, J. Inst. Maths. Applics., 20, 221-226 (1977).

Скрыть метаданые