Автор |
Qin, Shaowen |
Автор |
Kouris, Demitris |
Автор |
Peralta, Alonso |
Автор |
Hirose, Yukio |
Дата выпуска |
1996 |
dc.description |
Many overlayer/substrate systems exhibit a form of thin-film growth, which involves a layer-by-layer mode, subsequently switching to a three-dimensional growth (Stranski-Krastanov [SK]). This phenomenon has serious material implications because the layer-by-layer growth mode is often preferred in a number of important engineering applications. Recent experimental evidence suggests that the SK mode and resulting morphologies are controlled by local interactions among defects on growing crystal surfaces and cannot be properly characterized on the basis of thermodynamics alone. Surface defects corresponding to adatoms, vacancies and steps, together with misfit dislocations interact with each other affecting and often dominating the kinetic processes. Little work has actually been done in this area and problems of fundamental importance such as the elastic interaction between an adatom and a step or a misfit dislocation have not been addressed. The theoretical modeling that will be discussed here is focused on the local elastic field in the vicinity of adatoms, vacancies and steps as well as on issues involving their interaction. To obtain the near-the-defect behavior, a modified lattice theory is employed; this approach was developed by extending the eigenstrain concept into the classical lattice theory. Green' s functions for infinite and semi-infinite lattice spaces are derived and verified by comparing their asymptotic expressions with the corresponding continuum solutions. The analysis establishes the fact that differences between lattice and continuum solutions exist only in a small neighborhood of the defect. A Local Lattice Method (LLM) is subsequently proposed to study near defect deformation when a lattice level solution is required. It is shown through examples that the LLM is a simple and effective numerical scheme, regardless of the problem geometry. |
Издатель |
Sage Publications |
Название |
Micromechanical Analysis of Surface Defects |
Тип |
Journal Article |
DOI |
10.1177/108128659600100402 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
1 |
Первая страница |
369 |
Последняя страница |
391 |
Аффилиация |
Qin, Shaowen, Department of Mechanical and Production Engineering, National University of Singapore, Singapore |
Аффилиация |
Peralta, Alonso, Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ |
Аффилиация |
Hirose, Yukio, Department of Materials Science and Engineering, Kanazawa University, Kanazawa, Japan |
Выпуск |
4 |
Библиографическая ссылка |
[1] Frank, F. C. and van der Merwe, J. H.: One-dimensional dislocations. I. Static theory. Proc. Roy. Soc. London, A198, 205-216 (1949). |
Библиографическая ссылка |
[2] Grabow, M. H. and Gilmer, G. H.: Thin film growth modes, wetting and cluster nucleation. SurSci., 194, 333-346 (1988). |
Библиографическая ссылка |
[3] Snyder, C.W., Orr, B.G., Kessler, D., and Sander, L.M.: Effect of strain on surface morphology in highly strained InGaAs films. Phys. Rev. Lett., 66, 3032-3035 (1991). |
Библиографическая ссылка |
[4] Snyder, C.W., Barlett, D., Orr, B.G., Battacharya, P.K., and Singh, J.: The molecular beam epitaxy growth of InGaAs on GaAs(100) studied by in situ scanning tunneling microscopy and reflection high-energy electron diffraction. J. Vac. Sci. and Technol., B9, 2189-2193 (1991). |
Библиографическая ссылка |
[5] Guha, S., Madhukar, A., and Rajkumar, R.C.: Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxial growth of highy strained in xGal-xAs on GaAs(100). Appl. Phys. Lett., 57, 2110-2110 (1990). |
Библиографическая ссылка |
[6] Eaglesham, D.J. and Cerullo, M.: Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett., 64, 1943-1946 (1990). |
Библиографическая ссылка |
[7] LeGoues, F.K., Copel, M., and Tromp, R.M.: Microstructure and strain relief of Fe films grown layer by layer on Si(001). Phys. Rev., Phys. Rev. B42, 11, 690-690 (1990). |
Библиографическая ссылка |
[8] Asai, M., Ueba, H., and Tatsuyama, C.: Heteroepitaxial growth of Ge films on the Si(100)-2X1 surface. J. Appl. Phys., 58, 2577-2583 (1985). |
Библиографическая ссылка |
[9] Kunkel, R., Poelsema, B., Verheij, L.K., and Comsa, G.: Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates. Phys. Rev. Lett., 65, 733-736 (1990). |
Библиографическая ссылка |
[10] van der Vegt, H. A., van Pinxteren, H. M., Lohmeier, M., and Vlieg, E.: Surfactant-induced layer-by-layer growth of Ag on Ag(111). Phys. Rev. Lett., 68, 3335-3338 (1992). |
Библиографическая ссылка |
[11] Corcoran, S.G., Chakarova, G.S., and Sieradzki, K.: Stranski-Krastanov growth of Ag on Au(1 11) elecrodes. Phys. Rev. Lett., 71, 1585-1588 (1993). |
Библиографическая ссылка |
[12] Lau, K.H. and Kohn, W.: Elastic interaction of two atoms adsorbed on a solid surface. Surf Sci., 65, 607-618 (1977). |
Библиографическая ссылка |
[13] Marchenko, V.I. and Parshin, A. Ya.: Elastic properties of crystal surfaces. Sov. Phys. JETP, 52, 129-131 (1980). |
Библиографическая ссылка |
[14] Lur'e, A. I., McVean, D. B. and Radok, J. R. M.: Three-Dimensional Problems oIf the Theory of Elasticity, Interscience, New York, 1964. |
Библиографическая ссылка |
[15] Sieradzki, K. and Streitz, F.H.: Elastic interactions of defects on (111) Au surfaces. Phys. Rev., B45, 11 433-11 436 (1992). |
Библиографическая ссылка |
[16] Jayaprakash, C., Rottman, C., and Saam, W.F.: Simple model for crystal shapes: Step-step interactions and facet edges. Phys. Rev., B30, 6549-6554 (1984). |
Библиографическая ссылка |
[17] Born, M. and Huang, K.: Dynamic Theory of Crystal Lattice, Oxford University Press, UK, 1954. |
Библиографическая ссылка |
[18] Mindlin, R. D.: Elasticity, piezoelectricity and crystal lattice dynamics. J. Elasticity, 2 [4], 217-282 (1972). |
Библиографическая ссылка |
[19] Maradudin, A. A.: Screw dislocations and discrete elastic theory. J. Phys. Chem. Solids, 9, 1-20 (1958). |
Библиографическая ссылка |
[20] Mindlin, R. D.: Lattice theory of shear modes of vibration and torsional equilibrium of simple cubic crystal plates and bars. Int. J. Solids Structures, 6, 725-738 (1970). |
Библиографическая ссылка |
[21] Mura, T.: Eigenstrains in Lattice Theory, in Continuum Models of Discrete Systems, pp. 503-519, ed., J. W. Provan & H. H. Leipholz, University of Waterloo Press, 1977. |
Библиографическая ссылка |
[22] Sato, A., Watanabe, Y., and Mura, T.: Octahedral defects in a b.c.c. lattice examined by lattice theory. J. Phys. Chem. Solids, 49 [5], 529-540 (1988). |
Библиографическая ссылка |
[23] Mura, T.: Micromechanics of Defects in Solids, Martinus Nijhoff, London, 1982. |
Библиографическая ссылка |
[24] Owen, D. R. J. and Mura, T.: Periodic dislocation distributions in a half-space. J. Appl. Phys., 38 [5], 1999-2009 (1967). |
Библиографическая ссылка |
[25] Gazis, D. C. and Wallis, R. F.: Surface elastic waves in body-centered cubic lattices. Surf: Sci., 5, 482-492 (1966). |