Автор |
Rajagopal, K., R. |
Дата выпуска |
1996 |
dc.description |
A boundary layer approximation for nonlinearly elastic solids is advocated, with the full nonlinear equations assumed to hold in a narrow region adjacent to a boundary, whereas in the rest of the domain the equations of linearized elasticity are supposed to hold. |
Издатель |
Sage Publications |
Название |
Deformations of Nonlinear Elastic Solids in Unbounded Domains |
Тип |
Journal Article |
DOI |
10.1177/108128659600100407 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
1 |
Первая страница |
463 |
Последняя страница |
472 |
Аффилиация |
Rajagopal, K., R., Department of Mechanical Engineering, Texas A&M University, College Station, iX 77843-3123 |
Выпуск |
4 |
Библиографическая ссылка |
[1] Schlichting, H.: Boundary Layer Theory, McGraw-Hill, New York, 1968. |
Библиографическая ссылка |
[2] Rajagopal, K. R.: Boundary layers in non-linear fluids, trends in applications of mathematics to mechanics, in Pittman Monographs and Surveys in Pure and Applied Mathematics, Vol. 77, pp. 209-218, eds. M.D.P. Monteivo Marques and J. F. Rodrigues, White Plains, NY: Longman. |
Библиографическая ссылка |
[3] Mansutti, D., and Rajagopal, K. R.: Flow of a shear thinning fluid between intersecting planes. Intl. J. Non-Linear Mechanics, 26, 769-775 (1991). |
Библиографическая ссылка |
[4] Ogden, R., and Isherwood, D. A.: Solution of some finite plane-strain problems for compressible elastic solids. Q.J. Mech. Appl. Math., 31, 219-249 (1978). |
Библиографическая ссылка |
[5] Currie, P. K., and Hayes, M. A.: On non-universal finite elastic deformations, in Proceedings of JUTAM Symposium on Finite Elasticity, eds. D. E. Carlson and R. T. Shield, Nijhoff, The Hague-Boston-London, 1981. |
Библиографическая ссылка |
[6] Rajagopal, K. R., and Wineman, A. S.: New exact solutions in non-linear elasticity. Int. J. Engineering Science, 23, 217-232 (1985). |
Библиографическая ссылка |
[7] Boulanger, P. H., and Hayes, M. A.: Finite amplitude motions in some non-linear elastic media. Proc. R. Ir Academy, 89A, 135-146 (1989). |
Библиографическая ссылка |
[8] Hayes, M. A., and Rajagopal, K. R.: Inhomogeneous finite amplitude motions in a neo-Hookean solid. Proc. R. Jr Academy, 92A, 137-147 (1992). |
Библиографическая ссылка |
[9] Zhang, J., and Rajagopal, K. R.: Some inhomogeneous motions and deformations within the context of a non-linear elastic solid. Intl. J. Eng. Science, 30, 919-938 (1992). |
Библиографическая ссылка |
[10] Rajagopal, K. R., and Tao, L.: On an inhomogeneous deformation of a generalized neo-Hookean material. J. Elasticity, 28, 165-184 (1992). |
Библиографическая ссылка |
[1 1] Tao, L., Rajagopal, K. R., and Wineman, A. S.: Circular shearing and torsion of generalized neo-Hookean materials. IMA J. Appl. Math., 48, 23-37 (1992). |
Библиографическая ссылка |
[12] Rajagopal, K. R.: Boundary layers in finite thermoelasticity. J. Elasticity, 36, 271-301 (1995). |
Библиографическая ссылка |
[13] Lapcyzk, E., and Rajagopal, K. R.: Some inhomogeneous motions and deformations with the context of thermoelasticity. Trans. Canadian Soc. Mech. Engr, 19, 93-126 (1995). |
Библиографическая ссылка |
[14] Knowles, J. K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Intl. J. Fracture, 13, 611-639 (1977). |