Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Rajagopal, K., R.
Дата выпуска 1996
dc.description A boundary layer approximation for nonlinearly elastic solids is advocated, with the full nonlinear equations assumed to hold in a narrow region adjacent to a boundary, whereas in the rest of the domain the equations of linearized elasticity are supposed to hold.
Издатель Sage Publications
Название Deformations of Nonlinear Elastic Solids in Unbounded Domains
Тип Journal Article
DOI 10.1177/108128659600100407
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 1
Первая страница 463
Последняя страница 472
Аффилиация Rajagopal, K., R., Department of Mechanical Engineering, Texas A&M University, College Station, iX 77843-3123
Выпуск 4
Библиографическая ссылка [1] Schlichting, H.: Boundary Layer Theory, McGraw-Hill, New York, 1968.
Библиографическая ссылка [2] Rajagopal, K. R.: Boundary layers in non-linear fluids, trends in applications of mathematics to mechanics, in Pittman Monographs and Surveys in Pure and Applied Mathematics, Vol. 77, pp. 209-218, eds. M.D.P. Monteivo Marques and J. F. Rodrigues, White Plains, NY: Longman.
Библиографическая ссылка [3] Mansutti, D., and Rajagopal, K. R.: Flow of a shear thinning fluid between intersecting planes. Intl. J. Non-Linear Mechanics, 26, 769-775 (1991).
Библиографическая ссылка [4] Ogden, R., and Isherwood, D. A.: Solution of some finite plane-strain problems for compressible elastic solids. Q.J. Mech. Appl. Math., 31, 219-249 (1978).
Библиографическая ссылка [5] Currie, P. K., and Hayes, M. A.: On non-universal finite elastic deformations, in Proceedings of JUTAM Symposium on Finite Elasticity, eds. D. E. Carlson and R. T. Shield, Nijhoff, The Hague-Boston-London, 1981.
Библиографическая ссылка [6] Rajagopal, K. R., and Wineman, A. S.: New exact solutions in non-linear elasticity. Int. J. Engineering Science, 23, 217-232 (1985).
Библиографическая ссылка [7] Boulanger, P. H., and Hayes, M. A.: Finite amplitude motions in some non-linear elastic media. Proc. R. Ir Academy, 89A, 135-146 (1989).
Библиографическая ссылка [8] Hayes, M. A., and Rajagopal, K. R.: Inhomogeneous finite amplitude motions in a neo-Hookean solid. Proc. R. Jr Academy, 92A, 137-147 (1992).
Библиографическая ссылка [9] Zhang, J., and Rajagopal, K. R.: Some inhomogeneous motions and deformations within the context of a non-linear elastic solid. Intl. J. Eng. Science, 30, 919-938 (1992).
Библиографическая ссылка [10] Rajagopal, K. R., and Tao, L.: On an inhomogeneous deformation of a generalized neo-Hookean material. J. Elasticity, 28, 165-184 (1992).
Библиографическая ссылка [1 1] Tao, L., Rajagopal, K. R., and Wineman, A. S.: Circular shearing and torsion of generalized neo-Hookean materials. IMA J. Appl. Math., 48, 23-37 (1992).
Библиографическая ссылка [12] Rajagopal, K. R.: Boundary layers in finite thermoelasticity. J. Elasticity, 36, 271-301 (1995).
Библиографическая ссылка [13] Lapcyzk, E., and Rajagopal, K. R.: Some inhomogeneous motions and deformations with the context of thermoelasticity. Trans. Canadian Soc. Mech. Engr, 19, 93-126 (1995).
Библиографическая ссылка [14] Knowles, J. K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Intl. J. Fracture, 13, 611-639 (1977).

Скрыть метаданые