Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Fu, Yibin
Автор Zheng, Quanshui
Дата выпуска 1997
dc.description Propagation of nonlinear travelling waves in a neo-Hookean plate subjected to a plane-strain simple shear is considered in this paper as a model problem for waves propagating along nonprincipal directions of stretch. The evolution equation for a monochromatic wave is derived with the aid of the virtual work method. We show that the coefficient of the nonlinear term in the evolution equation is real and that this is also true for general form of the strain energy function and prestress. Thus nonlinear travelling waves with constant amplitude and amplitude dependent velocity can propagate in such a prestressed plate. The effect of shear strain on the stability of such nonlinear travelling waves with respect to side-band perturbations is also studied. It is shown that a simple shear has a destabilizing effect.
Издатель Sage Publications
Название Nonlinear Travelling Waves in a Neo-Hookean Plate Subjected to a Simple Shear
Тип Journal Article
DOI 10.1177/108128659700200103
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 2
Первая страница 27
Последняя страница 48
Аффилиация Fu, Yibin, Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK
Аффилиация Zheng, Quanshui, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Выпуск 1
Библиографическая ссылка [1] Connor, P. and Ogden, R. W.: The influence of shear strain and hydrostatic stress on stability and elastic waves in a layer. Int. J. Eng. Sci., 34, 375-397 (1996).
Библиографическая ссылка [2] Fu, Y. B. and Ogden, R. W.: Nonlinear stability analysis of pre-stressed elastic bodies, in Nonlinear Wave Phenomena, World Scientific series on Stability, Vibration and Control of Structures, forthcoming.
Библиографическая ссылка [3] Fu, Y. B.: Resonant-triad instability of a pre-stressed incompressible elastic plate. J. Elasticity, 41, 13-37 (1995).
Библиографическая ссылка [4] Newell, A. C.: Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985.
Библиографическая ссылка [5] Fu, Y. B.: On the propagation of nonlinear travelling waves in an incompressible elastic plate. Wave Motion, 19, 271-292 (1994).
Библиографическая ссылка [6] Ogden, R. W.: Non-linear elastic deformations, Ellis Horwood Ltd., New York, 1984.
Библиографическая ссылка [7] Fu, Y. B. and Devenish, B.: Effects of pre-stresses on the propagation of non-linear surface waves in an incompressible elastic half-space. Q. J. Mech. and Appl. Math., 49, 65-80 (1996).
Библиографическая ссылка [8] Chadwick, P. and Ogden, R. W.: On the definition of elastic moduli. Arch. Rational Mech. Anal., 44, 41-53 (1971).
Библиографическая ссылка [9] Wolfram, W.: Mathematica (2nd ed.), Addison-Wesley, Reading, MA, 1991.
Библиографическая ссылка [10] Benjamin, T. B. and Feir, J. E.: The disintegration of wavetrains on deep water. Part 1. Theory. J. Fluid Mech., 27, 417-430 (1967).
Библиографическая ссылка [11] Yuen, H. C. and Ferguson, W. E., Jr.: Relationship between Benjamin-Feir instability and recurrence in the nonlinear Schrodinger equation. Phys. Fluids, 21, 1275-1278 (1978).

Скрыть метаданые