Автор |
Saccomandi, Giuseppe |
Автор |
Vianello, Maurizio |
Дата выпуска |
1997 |
dc.description |
A relation between strain and stress, which is satisfied by transversely hemitropic hyperelastic materials for all finite deformations, is shown to characterize completely this symmetry class. |
Издатель |
Sage Publications |
Название |
A Universal Relation Characterizing Transversely Hemitropic Hyperelastic Materials |
Тип |
Journal Article |
DOI |
10.1177/108128659700200205 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
2 |
Первая страница |
181 |
Последняя страница |
188 |
Аффилиация |
Saccomandi, Giuseppe, Dipartimento di Metodi e Modelli Matematici, Universitά di Roma "La Sapienza," Via Scarpa, 00161 Roma, Italy |
Аффилиация |
Vianello, Maurizio, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy |
Выпуск |
2 |
Библиографическая ссылка |
[1] Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev., 40(12), 1699-1734 (1987). |
Библиографическая ссылка |
[2] Beatty, M. F.: A class of universal relations in isotropic elasticity theory. J. Elasticity, 17, 113-121 (1987). |
Библиографическая ссылка |
[3] Pucci, E. and Saccomandi, G.: Universal relations in continuum mechanics. Cont. Mech. Thermodynamics. forthcoming. |
Библиографическая ссылка |
[4] Achcar, N.: Hyperelastic materials possessing rotational symmetry. Appl. Mech. Rev., 48(11), SI9-S24 (1995). |
Библиографическая ссылка |
[5] Rychlewski, J.: On quasi-isotropic tensor functions. Arch. Mech., 36(2), 195-205 (1984). |
Библиографическая ссылка |
[6] Blume, J. A.: Elastic materials with coincident principal stress and strain axes. J. Elasticity, 35, 275-280 (1994). |
Библиографическая ссылка |
[7] Vianello, M.: Optimization of the stored energy and coaxiality of strain and stress in finite elasticity. J. Elasticity, 44, 193-202 (1996). |
Библиографическая ссылка |
[8] Gurtin, M. E.: An Introduction to Continuum Mechanics, Academic Press, New York, 1981. |
Библиографическая ссылка |
[9] Xiao, H.: General irreducible representations to constitutive equations of elastic crystals and transversely isotropic elastic solids. J. Elasticity, 39, 47-73 (1995). |
Библиографическая ссылка |
[10] Beatty, M. F.: A class of universal relations for constrained isotropic materials. Acta Mechanica, 80, 299-312 (1989). |
Библиографическая ссылка |
[11] Pucci, E., Saccomandi, G.: Universal relations in constrained elasticity. Mathematics & Mechanics of Solids, 1, 207-217 (1996). |