Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Saccomandi, Giuseppe
Автор Vianello, Maurizio
Дата выпуска 1997
dc.description A relation between strain and stress, which is satisfied by transversely hemitropic hyperelastic materials for all finite deformations, is shown to characterize completely this symmetry class.
Издатель Sage Publications
Название A Universal Relation Characterizing Transversely Hemitropic Hyperelastic Materials
Тип Journal Article
DOI 10.1177/108128659700200205
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 2
Первая страница 181
Последняя страница 188
Аффилиация Saccomandi, Giuseppe, Dipartimento di Metodi e Modelli Matematici, Universitά di Roma "La Sapienza," Via Scarpa, 00161 Roma, Italy
Аффилиация Vianello, Maurizio, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Выпуск 2
Библиографическая ссылка [1] Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev., 40(12), 1699-1734 (1987).
Библиографическая ссылка [2] Beatty, M. F.: A class of universal relations in isotropic elasticity theory. J. Elasticity, 17, 113-121 (1987).
Библиографическая ссылка [3] Pucci, E. and Saccomandi, G.: Universal relations in continuum mechanics. Cont. Mech. Thermodynamics. forthcoming.
Библиографическая ссылка [4] Achcar, N.: Hyperelastic materials possessing rotational symmetry. Appl. Mech. Rev., 48(11), SI9-S24 (1995).
Библиографическая ссылка [5] Rychlewski, J.: On quasi-isotropic tensor functions. Arch. Mech., 36(2), 195-205 (1984).
Библиографическая ссылка [6] Blume, J. A.: Elastic materials with coincident principal stress and strain axes. J. Elasticity, 35, 275-280 (1994).
Библиографическая ссылка [7] Vianello, M.: Optimization of the stored energy and coaxiality of strain and stress in finite elasticity. J. Elasticity, 44, 193-202 (1996).
Библиографическая ссылка [8] Gurtin, M. E.: An Introduction to Continuum Mechanics, Academic Press, New York, 1981.
Библиографическая ссылка [9] Xiao, H.: General irreducible representations to constitutive equations of elastic crystals and transversely isotropic elastic solids. J. Elasticity, 39, 47-73 (1995).
Библиографическая ссылка [10] Beatty, M. F.: A class of universal relations for constrained isotropic materials. Acta Mechanica, 80, 299-312 (1989).
Библиографическая ссылка [11] Pucci, E., Saccomandi, G.: Universal relations in constrained elasticity. Mathematics & Mechanics of Solids, 1, 207-217 (1996).

Скрыть метаданые