Автор |
dell'Isola, Francesco |
Автор |
Ruta, Giuseppe, C. |
Дата выпуска |
1997 |
dc.description |
We deal with the flexure (flexion inegale) of a Saint Venant cylinder whose sections we call Bredtlike with variable thickness. We consider a family of sections Dc whose thickness is scaled by a parameter c. This scaling allows for the construction of an soneparameter family of coordinate mappings from a fixedplane domain D onto ZDe. We represent the Helmholtz operator in D) in terms of a fixed system of coordinates in D and represent the shear stress field in what we call the Bredt basis field, which is not the natural basis associated with any coordinate system. Assuming that the shear stress admits a formal C power series expansion, we obtain a hierarchy of perturbation problems for its coefficients, finding the wellknown Jouravski formula at the lowest iterative step and obtaining its generalization at higher stepsthat is, when the section becomes thick. Similar results are obtained for the warping, the resultant shear stress, and the shear shape factors. |
Издатель |
Sage Publications |
Название |
Generalizing Jouravski Formulas by Techniques from Differential Geometry |
Тип |
Journal Article |
DOI |
10.1177/108128659700200305 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
2 |
Первая страница |
307 |
Последняя страница |
319 |
Аффилиация |
Ruta, Giuseppe, C., Università di Roma "La Sapienza," Facoltilà di Ingegneria, via Eudossiana 18, I-00184 Roma, Italy |
Выпуск |
3 |
Библиографическая ссылка |
[1] dell'Isola, F. and Ruta, G. C.: Outlooks in Saint Venant theory I: Formal expansions for torsion of Bredt-like sections. Archives of Mechanics, 46(6), 1005-1027 (1994). |
Библиографическая ссылка |
[2] Nayfeh, A. H.: Perturbation Methods, John Wiley, New York, 1973. |
Библиографическая ссылка |
[3] Malvern, L. E.: Introduction to the Mechanics of a Continuous Medium, Prentice Hall, Englewood Cliffs, NJ, 1969. |
Библиографическая ссылка |
[4] dell'Isola, F. and Rosa, L.: Outlooks in Saint-Venant theory II: Torsional rigidity, shear stress, "and all that" in the torsion of cylinders with sections of variable thickness. Archives of Mechanics, 48(4), 753-763 (1996). |
Библиографическая ссылка |
[5] dell'Isola, F. and Rosa, L.: An extension of Kelvin and Bredt formulas. Mathematics and Mechanics of Solids, 1(2), 243-250 (1996). |
Библиографическая ссылка |
[6] Clebsch, A.: Theorie de l'lasticite des corps solides (Traduite par MM. Barre de SaintVenant et Flamant, avec des Notes ttendues de M. Barre' de Saint-Venant), Dunod, Paris, 1883. [Reprinted by Johnson Reprint Corporation, New York, 1966] |
Библиографическая ссылка |
[7] Fraeijs de Veubeke, B. M.: A Course in Elasticity, Springer-Verlag, New York, 1979. |
Библиографическая ссылка |
[8] Feodosyev, V. I.: Soprotivlenie Materialov, MIR, Moskwa, 1968. [Italian translation: Resistenza dei materiali, Editori Riuniti, Roma, 1977] |
Библиографическая ссылка |
[9] Gjelsvik, A.: The Theory of Thin Walled Bars, John Wiley, New York, 1981. |
Библиографическая ссылка |
[10] Gavarini, C.: Lezioni di Scienza delle Costruzioni, 3rd ed., ESA, Milano, Italy, 1996. |
Библиографическая ссылка |
[11] Arnold, V. I.: Matematiceskie metody klassiceskoj mechaniki, MIR, Moskwa, 1979. [Italian translation: Metodi matematici delta meccanica classica, Editori Riuniti, Roma, 1992] |
Библиографическая ссылка |
[12] Wheeler, L. and Horgan, C. O.: Upper and lower bounds for the shear stress in the Saint-Venant theory of flexure. Journal of Elasticity, 6(4), 383-403 (1976). |