Автор |
Ventsel, Eduard, S. |
Дата выпуска |
1997 |
dc.description |
This article concerns the construction of a posteriori error estimates for the boundary element methods in plate-bending problems. The proposed approach allows one to assess the size of the error of a numerical solution through an accurate satisfaction of the prescribed boundary conditions. This error estimate analysis can also be used for boundary-type method formulations such as the Trefftz method, the boundary collocation method, and so on. |
Издатель |
Sage Publications |
Название |
A Posteriori Error Estimate Analysis for BEM in Plate-Bending Problems |
Тип |
Journal Article |
DOI |
10.1177/108128659700200306 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
2 |
Первая страница |
321 |
Последняя страница |
333 |
Аффилиация |
Ventsel, Eduard, S., Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-1401 |
Выпуск |
3 |
Библиографическая ссылка |
[1] Miranda, C.: Partial Differential Equations of Elliptic Type, Springer-Verlag, New York, 1970. |
Библиографическая ссылка |
[2] Fichera, G.: Ii Teorema del massimo modulo per 1'equazione dell'Elastostatica tridimensionale. Arch. Rational Mech. Anal., 7(5), 373-387 (1961). |
Библиографическая ссылка |
[3] Agmon, S: Maximum theorems for solution of higher order elliptic equations. Bull. Amer. Math. Soc., 66(2), 77-80 (1966). |
Библиографическая ссылка |
[4] Banerjee, P. K. and Butterfield, R.: Boundary Element Methods in Engineering Science, McGraw-Hill, London, 1981. |
Библиографическая ссылка |
[5] Brebbia, C. A., Telles, J.C.F., and Wrobel, L. C.: Boundary Element Techniques, Springer-Verlag, Berlin, 1984. |
Библиографическая ссылка |
[6] Kolodziej, J. A.: Review of application of boundary collocation method in mechanics of continuous media. Solid Mechanics Archives, 12, 187-231 (1987). |
Библиографическая ссылка |
[7] Herrera, I.: Boundary Methods: An Algebraic Theory, Pitman, London, 1984. |
Библиографическая ссылка |
[8] Babuska, I.: A posteriori error estimation for the finite element method. Nonlinear Finite Element Analysis in Structural Mechanics: Proc. Europe-U.S. Workshop, 28-30 (1980). |
Библиографическая ссылка |
[9] Kelly, D. W., De, J. P., Gago, S. R., and Zienkiewicz, O. Z.: A posteriori error analysis and adaptive processes in the finite element method. Int. Journalfor Numer Methods in Engineering, 19, 1593-1619 (1983). |
Библиографическая ссылка |
[10] Rank, E.: A-posteriori error estimates and adaptive refinement for some boundary element methods, in Proc. Int. Conf on Accuracy Estimates and Adaptive Refinements in Finite Element Comp., ARFEC, Lisbon, 1984. |
Библиографическая ссылка |
[11] De-hao Yu: A-posteriori error estimates and adaptive approaches for some boundary element methods, Proc. of the Ninth International Conference on Boundary Element Methods, pp. 241-256, ed., C. A. Brebbia, W. L. Wendlund, and G. Kuhn, Computational Mechanics Publications, Southampton, UK, 1987. |
Библиографическая ссылка |
[12] Ventsel, E. S. and Eremenko, S. V.: Numerical solution of plate bending problems by the compensative load method, in Proc. of All-Union Conf on Integral Equations and Boundary Value Problems of Mathematical Physics, pp. 18-24, Vladivostok, Russia, 1990 (in Russian). |
Библиографическая ссылка |
[13] Mikhlin, S. G.: Variational Methods in Mathematical Physics, Macmillan, New York, 1964. |
Библиографическая ссылка |
[14] Adams, R. A.: Sobolev Spaces, Academic Press, New York, 1975. |
Библиографическая ссылка |
[15] Fichera, G.: Existence Theorems in Elasticity, Springer-Verlag, Berlin, 1972. |
Библиографическая ссылка |
[16] Birman, M. S.: Quantitative Analysis in Sobolev Imbedding Theorems and Applications to Spectral Theory, American Mathematical Society, Providence, RI, 1980. |
Библиографическая ссылка |
[17] Varga, R.: Functional Analysis and Approximation Theory in Numerical Analysis, Society for Industrial and Applied Mathematics, Philadelphia, 1971. |
Библиографическая ссылка |
[18] Mikhlin, S. G.: Constants in Some Inequalities Analysis, John Wiley, New York, 1986. |
Библиографическая ссылка |
[19] Courant, R.: Methods of Mathematical Physics, Interscience Publishers, New York, 1962. |