Автор |
Soldatos, Kostas, P. |
Автор |
Watson, Philip |
Дата выпуска |
1997 |
dc.description |
This paper proposes a method for improving the performance of two-dimensional, higher order theories of homogeneous and laminated composite plates. The method is based on the appropriate specification of through-thickness shape functions which are suitable for the accurate stress analysis of plates, on the basis of a general six-degrees-of-freedom plate theory (G6DOFPT). G6DOFPT takes both transverse shear and transverse normal deformation effects into consideration using three shape functions, each of which is associated with one of the three unknown displacement components. Specification of these three shape functions is achieved by solving the corresponding equations of three-dimensional elasticity for a simply supported plate. Thus, the shape functions correspond to the exact elasticity solution presented in previous work. Hence, no results are shown for simply supported plates because, in that case, the present method will yield the results of the exact elasticity analysis. Instead, new results are presented and discussed. These deal with the cylindrical bending of homogeneous orthotropic and two-layered laminates which have both edges rigidly clamped. The new method is considered as the appropriate match of the new shape functions with the equations of G6DOFPT. This is a very promising combination because it employs through-thickness displacement and stress distributions having an "exact" shape away from the edge boundaries. In addition, it takes advantage of the relative ease with which solutions are obtained from the governing equations of a two-dimensional theory, especially in cases which involve complicated edge boundary conditions. |
Издатель |
Sage Publications |
Название |
Accurate Stress Analysis of Laminated Plates Combining a Two-Dimensional Theory with the Exact Three-Dimensional Solution for Simply Supported Edges |
Тип |
Journal Article |
DOI |
10.1177/108128659700200405 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
2 |
Первая страница |
459 |
Последняя страница |
489 |
Аффилиация |
Watson, Philip, Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, United Kingdom |
Выпуск |
4 |
Библиографическая ссылка |
[1] Srinivas, S. and Rao, A. K.: Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struct., 6, 1463-1481 (1970). |
Библиографическая ссылка |
[2] Pagano, N. J.: Exact solution for composite laminates in cylindrical bending. J. Composite Mat., 3, 398-411 (1969). |
Библиографическая ссылка |
[3] Ren, J. G.: Analysis of simply-supported laminated circular cylindrical shell roofs. Composite Struct., 11, 277-292 (1989). |
Библиографическая ссылка |
[4] Ye, J. Q. and Soldatos, K. P.: Three-dimensional vibrations of laminated cylinders and cylindrical panels with a symmetric or an antisymmetric cross-ply lay-up. Composites Eng., 4, 429-444 (1994). |
Библиографическая ссылка |
[5] Ye, J. Q. and Soldatos, K. P: Three-dimensional stress analysis of orthotropic and cross-ply laminated hollow cylinders and cylindrical panels. Computer Methods Applied Mech. Eng., 117, 331-351 (1994). |
Библиографическая ссылка |
[6] Soldatos, K. P.: Review of three dimensional dynamic analyses of circular cylinders and cylindrical panels. Applied Mech. Rev., 47, 501-516 (1994). |
Библиографическая ссылка |
[7] Watson, P.: The stress and deformation of laminated plates and shells, Ph.D. thesis, University of Nottingham, 1991. |
Библиографическая ссылка |
[8] Spencer, A.J.M., Watson, P., and Rogers, T. G.: Exact theory of heterogeneous anisotropic plates. Materials Sci. Forum, 123-125, 235-244 (1993). |
Библиографическая ссылка |
[9] Spencer, A.J.M., Watson, P., and Rogers, T. G.: Stress and deformation in moderately anisotropic inhomogeneous elastic plates. J. Appl. Mathematics Phys. (ZAMP), 46, S225-S244 (1995). |
Библиографическая ссылка |
[10] Rogers, T. G., Watson, P., and Spencer, AJ.M.: An exact three-dimensional solution for normal loading of inhomogeneous and laminated anisotropic elastic plates of moderate thickness. Proc. Roy. Soc. Lonjdon, Series A, 437, 199-213 (1992). |
Библиографическая ссылка |
[11] Rogers, T. G., Watson, P., and Spencer, AJ.M.: Exact three-dimensional elasticity solution for bending of moderate thick inhomogeneous and laminated strips under normal pressure. Int. J. Solids Struct., 32, 1659-1673 (1995). |
Библиографическая ссылка |
[12] Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech., 12, A69-A77 (1945). |
Библиографическая ссылка |
[13] Mindlin, R. D.: Influence of rotatory inertia and shear on flexural vibrations of isotropic elastic plates. J. Appl. Mech., 18, 31-38 (1951). |
Библиографическая ссылка |
[14] Yang, P. C., Norris, C., and Stavsky, Y.: Elastic wave propagation in heterogeneous plates. Int. J. Solids Struct., 2, 665-684 (1966). |
Библиографическая ссылка |
[15] Bhimaraddi, A. and Stevens, L. K.: A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates. J. Appl. Mech., 51, 195-198 (1984). |
Библиографическая ссылка |
[16] Reddy, J. N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech., 51, 745-752 (1984). |
Библиографическая ссылка |
[17] Soldatos, K. P.: On certain refined theories for plate bending. J. Appl. Mech., 55, 994-995 (1988). |
Библиографическая ссылка |
[18] Di Sciuva, M.: Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: An evaluation of a new displacement model. J. Sound Vibration, 105, 425-442 (1986). |
Библиографическая ссылка |
[19] Lee, K. H., Senthilnathan, N. R., Lim, S. P., and Chow, S. T.: An improved zig-zag model for the bending of laminated composite plates. Composite Struct., 15, 137-148 (1990). |
Библиографическая ссылка |
[20] Savithri, S. and Varadan, T. K.: Free vibration and stability of cross-ply laminated plates. J. Sound Vibration, 141, 516-520 (1990). |
Библиографическая ссылка |
[21] Cho, M. and Parmerter, R. R.: An efficient higher-order plate theory for laminated composites. Composite Struct., 20, 113-123 (1992). |
Библиографическая ссылка |
[22] Soldatos, K P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech., 94, 195-220 (1992). |
Библиографическая ссылка |
[23] Touratier, M.: A refined theory of laminated shallow shells. Int. J. Solids Struct., 29, 1401-1415 (1992). |
Библиографическая ссылка |
[24] Mau, S. T.: A refined laminated plate theory. J. Appl. Mech., 40, 606-607 (1973). |
Библиографическая ссылка |
[25] Srinivas, S.: A refined analysis of composite laminates. J. Sound Vibration, 30, 495-507 (1973). |
Библиографическая ссылка |
[26] Reddy, J. N.: A generalization of two-dimensional theories of laminated composite plates. Commun. Appl. Num. Methods, 3, 173-180 (1987). |
Библиографическая ссылка |
[27] Noor, A. K. and Burton, W. S.: Assessment of shear deformation theories for multilayered composite plates. Appl. Mech. Rev., 42, 1-10 (1989). |
Библиографическая ссылка |
[28] Barbero, E. J., Reddy, J. N., and Teply, J.: An accurate determination of stresses in thick laminates using a generalized plate theory. Int. J. Num. Methods Eng., 29, 1-14 (1990). |
Библиографическая ссылка |
[29] Davalos, J. F., Kim, Y., and Barbero, E. J.: Analysis of laminated beams with a layer-wise constant shear theory. Composite Struct., 28, 241-253 (1994). |
Библиографическая ссылка |
[30] Soldatos, K. P.: A general laminated plate theory accounting for continuity of displacements and transverse shear stresses at material interfaces. Composite Struct., 20, 195-211 (1992). |
Библиографическая ссылка |
[31] Soldatos, K. P.: A four-degrees-of-freedom cylindrical shell theory accounting for both transverse shear and transverse normal deformation. J. Sound Vibration, 159, 533-539 (1992). |
Библиографическая ссылка |
[32] Soldatos, K. P.: Vectorial approach for the formulation of variationally consistent higher-order plate theories. Composites Eng., 3, 3-17 (1993). |
Библиографическая ссылка |
[33] Soldatos, K. P.: A non-linear transverse shear deformable plate theory allowing a multiple choice of trial displacement and stress distributions. Composites Eng., 3, 885-897 (1993). |
Библиографическая ссылка |
[34] Soldatos, K. P. and Timarci, T.: A unified formulation of laminated composite shear deformable five-degrees-of-freedom cylindrical shell theories. Composite Struct., 25, 165-171 (1993). |
Библиографическая ссылка |
[35] Soldatos, K. P.: Generalization of variationally consistent plate theories on the basis of a vectorial formulation. J. Sound Vibration, 183, 819-839 (1995). |
Библиографическая ссылка |
[36] Levinson, M.: A novel approach to thick plate theory suggested by studies in foundation theory. Int. J. Mech. Sci., 26, 427-436 (1984). |
Библиографическая ссылка |
[37] Di Sciuva, M.: Multilayered anisotropic models with continuous interlaminar stresses. Composite Struct., 22, 149-167 (1992). |
Библиографическая ссылка |
[38] Noor, A. K. and Burton, W. S.: Stress and free vibration analyses of multilayered composite plates. Composite Struct., 11, 183-204 (1989). |
Библиографическая ссылка |
[39] Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci., 29, 901-916 (1991). |
Библиографическая ссылка |
[40] Li, X. and Liu, D.: Interlayer slip theory for cross-ply laminates with nonrigid interfaces. Am. Inst. Aeronautics Astronautics J., 30, 1063-1073 (1992). |
Библиографическая ссылка |
[41] Li, X. and Liu, D.: Zigzag theory for composite laminates. Am. Inst. Aeronautics Astronautics J., 33, 1163-1165 (1995). |
Библиографическая ссылка |
[42] Heuer, R.: Static and dynamic analysis of transversely isotropic, moderately thick sandwich beams by analogy. Acta Mech., 91, 1-9 (1992). |
Библиографическая ссылка |
[43] Cho, M. and Parmerter, R. R.: Efficient higher order composite plate theory for general lamination configurations. Am. Inst. Aeronautics Astronautics J., 31, 1299-1306 (1993). |
Библиографическая ссылка |
[44] He, J.-F., Chou, M., and Zhang, X.: Bending analysis of laminated plates using a refined shear deformation theory. Composite Struct., 24, 125-138 (1993). |
Библиографическая ссылка |
[45] Ping, L., Yongwell, Z., and Kaida, Z.: Bending of high-order refined shear deformation theory for rectangular composite plate. Int. J. Solids Struct., 31, 2491-2507 (1994). |
Библиографическая ссылка |
[46] Lee, K. H., Lin, W. Z., and Chow, S. T.: Bidirectional bending of laminated plates using an improved zig-zag model. Composite Struct., 28, 283-294 (1994). |
Библиографическая ссылка |
[47] Savoia, M.: On the accuracy of one-dimensional models for multilayered composite beams. Int. J. Solids Struct., 33, 521-544 (1995). |
Библиографическая ссылка |
[48] Jones, R. M.: Mechanics of Composite Materials, Hemisphere, New York, 1975. |
Библиографическая ссылка |
[49] Whitney, J. M. and Leissa, A. W.: Analysis of a simply supported laminated anisotropic rectangular plate. Am. Inst. Aeronautics Astronautics J., 8, 28-33 (1970). |
Библиографическая ссылка |
[50] Whitney, J. M. and Sun, C. T.: A higher order theory for extensional motion of laminated composites. J. Sound Vibration, 30, 35-97 (1973). |
Библиографическая ссылка |
[51] Sokolnikoff, I. S.: Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New York, 1956. |
Библиографическая ссылка |
[52] Timarci, T. and Soldatos, K. P.: Comparative dynamic studies for symmetric cross-ply circular cylindrical shells on the basis of a unified shear deformable shell theory. J. Sound Vibration, 187, 609-624 (1996). |