Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Murphy, Jeremiah, G.
Дата выпуска 1997
dc.description This paper examines nonhomogeneous deformations of homogeneous, isotropic, compressible, nonlinearly elastic solids. It is assumed that the deformation is the gradient of a scalar field, and then determine the equation satisfied by this field from the equation of equilibrium. The strain energy function assumed is a generalization of the harmonic material and the generalized Varga material. For the special case of the generalized Varga material, a similarity solution is found for the scalar field. This solution describes the deformation of regions bounded by a family of surfaces which includes circles, ellipses, and hyperbolas in two and three dimensions. The solution is then partially extended to the more general elastic material.
Издатель Sage Publications
Название Irrotational Deformations in Finite Compressible Elasticity
Тип Journal Article
DOI 10.1177/108128659700200406
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 2
Первая страница 491
Последняя страница 502
Аффилиация Murphy, Jeremiah, G., Department of Science, R. TC. Tallaght, Dublin 24, Ireland
Выпуск 4
Библиографическая ссылка [1] Ericksen, J. L.: Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys., 34, 126-128 (1955).
Библиографическая ссылка [2] Blatz, P. J. and Ko, W. L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol., 6, 223-251 (1962).
Библиографическая ссылка [3] Carroll, M. M. and Horgan, C. O.: Finite strain solutions for a compressible elastic solid. Quart. Appl. Math., 48, 767-780 (1990).
Библиографическая ссылка [4] John, F.: Plane strain solutions for a perfectly elastic material of harmonic type. Commun. Pure Appl. Math., 13, 239-296 (1960).
Библиографическая ссылка [5] Haughton, D. M.: Inflation and bifurcation of thick-walled compressible elastic spherical shells. IMA J. Appl. Math., 39, 259-272 (1987).
Библиографическая ссылка [6] Carroll, M. M.: Finite strain solutions in compressible isotropic elasticity. J. Elasticity, 20, 65-92 (1988).
Библиографическая ссылка [7] Ogden, R. W. and Isherwood, D. A.: Solution of some finite plane strain problems for compressible elastic solids. Q. J. Mech. Appl. Math., 31, 219-249 (1978).
Библиографическая ссылка [8] Jafari, A. H., Abeyaratne, R., and Horgan, C. O.: The finite deformation of a pressurized circular tube for a class of compressible materials. ZAMP, 35, 227-246 (1984).
Библиографическая ссылка [9] Currie, P. K. and Hayes, M.: On non-universal finite elastic deformations, in Finite Elasticity, Proc. IUTAM Symp., pp. 143-150, ed., D. E. Carlson & R. T. Shield, Martinus Nijhoff, The Hague, 1982.
Библиографическая ссылка [10] Polignone, D. A. and Horgan, C. O.: Pure torsion of compressible nonlinearly elastic circular cylinders. Quart. Appl. Math., 49, 591-607 (1991).
Библиографическая ссылка [11] Polignone, D. A. and Horgan, C. O.: Axisymmetric finite anti-plane shear of compressible nonlinearly elastic circular tubes. Quart. Appl. Math., 50, 232-341 (1992).
Библиографическая ссылка [12] Polignone, D. A. and Horgan, C. O.: Pure azimuthal shear of compressible nonlinearly elastic circular tubes. Quart. Appl. Math., 52, 113-131 (1994).
Библиографическая ссылка [13] Horgan, C. O.: On axisymmetric solutions for compressible nonlinearly elastic solids. ZAMP, 46, S107-S125 (1995).
Библиографическая ссылка [14] Varley, E. and Cumberbatch, E.: Finite deformations of elastic materials surrounding cylindrical holes. J. Elasticity, 10, 341-405 (1980).
Библиографическая ссылка [15] Wheeler, L. T.: Finite deformations of a harmonic elastic medium containing an ellipsoidal cavity. Int. J. Solids Struct., 21, 799-804 (1985).
Библиографическая ссылка [16] Carroll, M. M.: Controllable deformations for special classes of compressible elastic solids. Stability Appl. Anal. Continuous Media, 1, 309-323 (1991).
Библиографическая ссылка [17] Murphy, J. G.: A family of solutions describing spherical inflation in finite, compressible elasticity. Quart. J. Mech. Appl. Math., 50, 35-45 (1997).

Скрыть метаданые