Автор |
Murphy, Jeremiah, G. |
Дата выпуска |
1997 |
dc.description |
This paper examines nonhomogeneous deformations of homogeneous, isotropic, compressible, nonlinearly elastic solids. It is assumed that the deformation is the gradient of a scalar field, and then determine the equation satisfied by this field from the equation of equilibrium. The strain energy function assumed is a generalization of the harmonic material and the generalized Varga material. For the special case of the generalized Varga material, a similarity solution is found for the scalar field. This solution describes the deformation of regions bounded by a family of surfaces which includes circles, ellipses, and hyperbolas in two and three dimensions. The solution is then partially extended to the more general elastic material. |
Издатель |
Sage Publications |
Название |
Irrotational Deformations in Finite Compressible Elasticity |
Тип |
Journal Article |
DOI |
10.1177/108128659700200406 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
2 |
Первая страница |
491 |
Последняя страница |
502 |
Аффилиация |
Murphy, Jeremiah, G., Department of Science, R. TC. Tallaght, Dublin 24, Ireland |
Выпуск |
4 |
Библиографическая ссылка |
[1] Ericksen, J. L.: Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys., 34, 126-128 (1955). |
Библиографическая ссылка |
[2] Blatz, P. J. and Ko, W. L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol., 6, 223-251 (1962). |
Библиографическая ссылка |
[3] Carroll, M. M. and Horgan, C. O.: Finite strain solutions for a compressible elastic solid. Quart. Appl. Math., 48, 767-780 (1990). |
Библиографическая ссылка |
[4] John, F.: Plane strain solutions for a perfectly elastic material of harmonic type. Commun. Pure Appl. Math., 13, 239-296 (1960). |
Библиографическая ссылка |
[5] Haughton, D. M.: Inflation and bifurcation of thick-walled compressible elastic spherical shells. IMA J. Appl. Math., 39, 259-272 (1987). |
Библиографическая ссылка |
[6] Carroll, M. M.: Finite strain solutions in compressible isotropic elasticity. J. Elasticity, 20, 65-92 (1988). |
Библиографическая ссылка |
[7] Ogden, R. W. and Isherwood, D. A.: Solution of some finite plane strain problems for compressible elastic solids. Q. J. Mech. Appl. Math., 31, 219-249 (1978). |
Библиографическая ссылка |
[8] Jafari, A. H., Abeyaratne, R., and Horgan, C. O.: The finite deformation of a pressurized circular tube for a class of compressible materials. ZAMP, 35, 227-246 (1984). |
Библиографическая ссылка |
[9] Currie, P. K. and Hayes, M.: On non-universal finite elastic deformations, in Finite Elasticity, Proc. IUTAM Symp., pp. 143-150, ed., D. E. Carlson & R. T. Shield, Martinus Nijhoff, The Hague, 1982. |
Библиографическая ссылка |
[10] Polignone, D. A. and Horgan, C. O.: Pure torsion of compressible nonlinearly elastic circular cylinders. Quart. Appl. Math., 49, 591-607 (1991). |
Библиографическая ссылка |
[11] Polignone, D. A. and Horgan, C. O.: Axisymmetric finite anti-plane shear of compressible nonlinearly elastic circular tubes. Quart. Appl. Math., 50, 232-341 (1992). |
Библиографическая ссылка |
[12] Polignone, D. A. and Horgan, C. O.: Pure azimuthal shear of compressible nonlinearly elastic circular tubes. Quart. Appl. Math., 52, 113-131 (1994). |
Библиографическая ссылка |
[13] Horgan, C. O.: On axisymmetric solutions for compressible nonlinearly elastic solids. ZAMP, 46, S107-S125 (1995). |
Библиографическая ссылка |
[14] Varley, E. and Cumberbatch, E.: Finite deformations of elastic materials surrounding cylindrical holes. J. Elasticity, 10, 341-405 (1980). |
Библиографическая ссылка |
[15] Wheeler, L. T.: Finite deformations of a harmonic elastic medium containing an ellipsoidal cavity. Int. J. Solids Struct., 21, 799-804 (1985). |
Библиографическая ссылка |
[16] Carroll, M. M.: Controllable deformations for special classes of compressible elastic solids. Stability Appl. Anal. Continuous Media, 1, 309-323 (1991). |
Библиографическая ссылка |
[17] Murphy, J. G.: A family of solutions describing spherical inflation in finite, compressible elasticity. Quart. J. Mech. Appl. Math., 50, 35-45 (1997). |