Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ting, T., C.T.
Дата выпуска 1998
dc.description For a two-dimensional deformation of linear anisotropic elastic materials, the analysis requires computation of certain eigenvalues p that are the roots of a sextic algebraic equation whose coefficients depend only on the elastic constants. It is known that the sextic equation reduces to a cubic equation in p<sup>2</sup> for materials of monoclinic or higher symmetry with a symmetry plane at xi = 0 or at x2 = 0. The advantage of having a cubic equation in p<sup>2</sup> is not only that p can be obtained analytically. In many cases, the solution to an anisotropic elasticity problem is much simplified. The purpose of this paper is to present other anisotropic elastic materials for which the sextic equation is a cubic equation in p<sup>2</sup>. These materials may not possess a plane of symmetry. The author shows that as few as two restrictions on the elastic constants are sufficient to deduce these materials.
Издатель Sage Publications
Название Anisotropic Elastic Materials for which the Sextic Equation is a Cubic Equation in p2
Тип Journal Article
DOI 10.1177/108128659800300101
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 3
Первая страница 3
Последняя страница 16
Аффилиация Ting, T., C.T., Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL 60607-7023
Выпуск 1
Библиографическая ссылка [1] Lekhnitskii, S. G.: Theory of Elasticity of an Anisotropic Body, Mir, Moscow, 1981.
Библиографическая ссылка [2] Stroh, A. N.: Steady state problems in anisotropic elasticity. J. Math. Phys., 41, 77-103 (1962).
Библиографическая ссылка [3] Eshelby, J. D., Read, W. T., and Shockley, W.: Anisotropic elasticity with applications to dislocation theory. Acta Metall., 1, 251-259 (1953).
Библиографическая ссылка [4] Stroh, A. N.: Dislocations and cracks in anisotropic elasticity. Phil. Mag., 3, 625-646 (1958).
Библиографическая ссылка [5] Head, A. K.: The Galois unsolvability of the sextic equation of anisotropic elasticity. J. Elasticity, 9, 9-20 (1979).
Библиографическая ссылка [6] Ting, T.C.T. and Lee, V.-G.: The three-dimensional elastostatic Green's function for general anisotropic linear elastic solids. Q. J. Mech. Appl. Math., 50, 407-426 (1997).
Библиографическая ссылка [7] Ting, T.C.T.: New explicit expression of Barnett-Lothe tensors for anisotropic linear elastic materials. J. Elasticity, 47, 23-50 (1997).
Библиографическая ссылка [8] Barnett, D. M. and Lothe, J.: Synthesis of the sextic and the integral formalism for dislocations, Greens function and surface waves in anisotropic elastic solids. Phys. Norv., 7, 13-19 (1973).
Библиографическая ссылка [9] Chadwick, P. and Smith, G. D.: Foundations of the theory of surface waves in anisotropic elastic materials. Adv. Appl. Mech., 17, 303-376 (1977).
Библиографическая ссылка [10] Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York, 1996.
Библиографическая ссылка [11] Ting, T.C.T.: Barnett-Lothe tensors and their associated tensors for monoclinic materials with the symmetry plane at X3 = 0. J. Elasticity, 27, 143-165 (1992).
Библиографическая ссылка [12] Barnett, D. M. and Kirchner, H.O.K.: A proof of the equivalence of the Stroh and Lekhnitskii sextic equations for plane anisotropic elastostatics. Phil. Mag., A76, 231-239 (1997).
Библиографическая ссылка [13] Hohn, F. E.: Elementary Matrix Algebra, Macmillan, New York, 1965.
Библиографическая ссылка [14] Cowin, S. C. and Mehrabadi, M. M.: On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math., 40, 451-476 (1987).
Библиографическая ссылка [15] Ting, T.C.T.: Effects of change of reference coordinates on the stress analyses of anisotropic elastic materials. Int. J. Solids Structures, 18, 139-152 (1982).
Библиографическая ссылка [16] Ting, T.C.T.: Existence of an extraordinary degenerate matrix N for anisotropic elastic materials. Q. J. Mech. Appl. Math., 49, 405-417 (1996).

Скрыть метаданые