Автор |
Paullet, Joseph, E. |
Автор |
Warne, Debra, Polignone |
Автор |
Warne, Paul, G. |
Дата выпуска |
1998 |
dc.description |
The authors consider the two-point boundary-value problem resulting from the equations of nonlinear elastostatics for azimuthal shear of a Blatz-Ko tube. Previous work on this problem by Simmonds and Warne includes a numerical study of these equations and indicates that smooth radial deformation solutions (no kinks) should exist regardless of the aspect ratio of the tube, provided that the dimensionless applied torque r is small enough (r <-0.72). The numerics of Simmonds and Warne also indicated that the existence of smooth solutions for r >-0.72 depends on the geometry of the tube, and that for r = A, no smooth solution exists. Motivated by this numerical work, the authors prove via a topological shooting argument the existence and uniqueness of smooth solutions to this problem for r < tr, = 3/44 S 0.69, and the nonexistence of smooth solutions for r = a. |
Издатель |
Sage Publications |
Название |
Existence and Uniqueness of Azimuthal Shear Solutions in Compressible Isotropic Nonlinear Elasticity |
Тип |
Journal Article |
DOI |
10.1177/108128659800300104 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
3 |
Первая страница |
53 |
Последняя страница |
69 |
Аффилиация |
Paullet, Joseph, E., The Behrend College, Division of Science Penn State Erie, Erie, PA 16563 |
Аффилиация |
Warne, Debra, Polignone, Mathematics Department, University of Tennessee, Knoxville, TN 37996-1300 |
Аффилиация |
Warne, Paul, G., Division of Mathematics and Computer Science, Maryville College, Maryville, TN 37804 |
Выпуск |
1 |
Библиографическая ссылка |
[1] Rivlin, R. S.: Large elastic deformations of isotropic materials. VI: Further results in the theory of torsion, shear and flexure. Phil. Trans. Roy. Soc. London, Ser A, 242, 173-195 (1949). |
Библиографическая ссылка |
[2] Ogden, R. W., Chadwick, P., and Haddon, E. W.: Combined axial and torsional shear of a tube of incompressible isotropic elastic material. Q. J. Mech. Appl. Math., 26, 23-41 (1973). |
Библиографическая ссылка |
[3] Simmonds, J. G. and Wane, P.: Azimuthal shear of compressible or incompressible, rubber-like, polarorthotropic tubes of infinite extent. Int. J. Nonlinear Mech., 27, 447-464 (1992). |
Библиографическая ссылка |
[4] Mioduchowski, A. and Haddow, J. B.: Combined torsional and telescopic shear of compressible hyperelastic tube. J. Appl. Mech., 46, 223-226 (1979). |
Библиографическая ссылка |
[5] Ertepinar, A.: Finite deformation of compressible hyperelastic tubes subjected to circumferential shear. Int. J. Eng. Sci., 23, 1187-1195 (1985). |
Библиографическая ссылка |
[6] Ertepinar, A.: On the finite circumferential shearing of compressible hyperelastic tubes. Int. J. Eng. Sci., 28, 889-896 (1990). |
Библиографическая ссылка |
[7] Haughton, D. M.: Shearing of compressible elastic cylinders. Q. J. Mech. Appl. Math., 46, 471-486 (1993). |
Библиографическая ссылка |
[8] Wineman, A. S. and Waldron, W. K. Jr.: Normal stress effects induced during circular shear of a compressible nonlinear elastic cylinder. Int. J. Nonlinear Mech., 30, 323-339 (1995). |
Библиографическая ссылка |
[9] Carroll, M. M., Murphy, J. G., and Rooney, F. J.: Plane stress problems for compressible materials. Int. J. Solids Structures, 36, 1597-1607 (1994). |
Библиографическая ссылка |
[10] Polignone, D. A. and Horgan, C. O.: Pure azimuthal shear of compressible nonlinearly elastic circular tubes. Q. Appl. Math., 52, 113-131 (1994). Errata, 54, 395 (1996). |
Библиографическая ссылка |
[11] Blatz, P. J. and Ko, W. L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol., 6, 223-251 (1962). |
Библиографическая ссылка |
[12] Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Reviews, 40, 1699-1734 (1987). |
Библиографическая ссылка |
[13] Paullet, J. E. and Polignone, D. A.: Existence and a priori bounds for the finite torsion solution for a class of general Blatz-Ko materials. Math. Mech. Solids, 1, 315-326 (1996). |
Библиографическая ссылка |
[14] Truesdell, C. and Noll, W.: The nonlinear field theories of mechanics, in Handbuch der Physik, 111/3, ed., S. Flugge, Springer, Berlin, 1965. |
Библиографическая ссылка |
[15] Green, A. E. and Zerna, W.: Theoretical Elasticity, Oxford University Press, London, 1968. |
Библиографическая ссылка |
[16] Ogden, R. W.: Nonlinear Elastic Deformations, Ellis Horwood, Chichester, 1984. |
Библиографическая ссылка |
[17] Carroll, M. M. and Horgan, C. O.: Finite strain solutions for a compressible elastic solid. Q. Appl. Math., 48, 767-780 (1990). |
Библиографическая ссылка |
[18] Horgan, C. O.: Remarks on ellipticity for the generalized Blatz-Ko constitutive model for a compressible nonlinearly elastic solid. J. Elasticity, 42, 165-176 (1996). |
Библиографическая ссылка |
[19] Knowles, J. K. and Sternberg, E.: On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elasticity, 5, 341-361 (1975). |
Библиографическая ссылка |
[20] Horgan, C. O. and Polignone, D. A.: A note on the pure torsion of a circular cylinder for a compressible nonlinearly elastic material with nonconvex strain energy. J. Elasticity, 37, 167-178 (1995). |