Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Paullet, Joseph, E.
Автор Warne, Debra, Polignone
Автор Warne, Paul, G.
Дата выпуска 1998
dc.description The authors consider the two-point boundary-value problem resulting from the equations of nonlinear elastostatics for azimuthal shear of a Blatz-Ko tube. Previous work on this problem by Simmonds and Warne includes a numerical study of these equations and indicates that smooth radial deformation solutions (no kinks) should exist regardless of the aspect ratio of the tube, provided that the dimensionless applied torque r is small enough (r <-0.72). The numerics of Simmonds and Warne also indicated that the existence of smooth solutions for r >-0.72 depends on the geometry of the tube, and that for r = A, no smooth solution exists. Motivated by this numerical work, the authors prove via a topological shooting argument the existence and uniqueness of smooth solutions to this problem for r < tr, = 3/44 S 0.69, and the nonexistence of smooth solutions for r = a.
Издатель Sage Publications
Название Existence and Uniqueness of Azimuthal Shear Solutions in Compressible Isotropic Nonlinear Elasticity
Тип Journal Article
DOI 10.1177/108128659800300104
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 3
Первая страница 53
Последняя страница 69
Аффилиация Paullet, Joseph, E., The Behrend College, Division of Science Penn State Erie, Erie, PA 16563
Аффилиация Warne, Debra, Polignone, Mathematics Department, University of Tennessee, Knoxville, TN 37996-1300
Аффилиация Warne, Paul, G., Division of Mathematics and Computer Science, Maryville College, Maryville, TN 37804
Выпуск 1
Библиографическая ссылка [1] Rivlin, R. S.: Large elastic deformations of isotropic materials. VI: Further results in the theory of torsion, shear and flexure. Phil. Trans. Roy. Soc. London, Ser A, 242, 173-195 (1949).
Библиографическая ссылка [2] Ogden, R. W., Chadwick, P., and Haddon, E. W.: Combined axial and torsional shear of a tube of incompressible isotropic elastic material. Q. J. Mech. Appl. Math., 26, 23-41 (1973).
Библиографическая ссылка [3] Simmonds, J. G. and Wane, P.: Azimuthal shear of compressible or incompressible, rubber-like, polarorthotropic tubes of infinite extent. Int. J. Nonlinear Mech., 27, 447-464 (1992).
Библиографическая ссылка [4] Mioduchowski, A. and Haddow, J. B.: Combined torsional and telescopic shear of compressible hyperelastic tube. J. Appl. Mech., 46, 223-226 (1979).
Библиографическая ссылка [5] Ertepinar, A.: Finite deformation of compressible hyperelastic tubes subjected to circumferential shear. Int. J. Eng. Sci., 23, 1187-1195 (1985).
Библиографическая ссылка [6] Ertepinar, A.: On the finite circumferential shearing of compressible hyperelastic tubes. Int. J. Eng. Sci., 28, 889-896 (1990).
Библиографическая ссылка [7] Haughton, D. M.: Shearing of compressible elastic cylinders. Q. J. Mech. Appl. Math., 46, 471-486 (1993).
Библиографическая ссылка [8] Wineman, A. S. and Waldron, W. K. Jr.: Normal stress effects induced during circular shear of a compressible nonlinear elastic cylinder. Int. J. Nonlinear Mech., 30, 323-339 (1995).
Библиографическая ссылка [9] Carroll, M. M., Murphy, J. G., and Rooney, F. J.: Plane stress problems for compressible materials. Int. J. Solids Structures, 36, 1597-1607 (1994).
Библиографическая ссылка [10] Polignone, D. A. and Horgan, C. O.: Pure azimuthal shear of compressible nonlinearly elastic circular tubes. Q. Appl. Math., 52, 113-131 (1994). Errata, 54, 395 (1996).
Библиографическая ссылка [11] Blatz, P. J. and Ko, W. L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol., 6, 223-251 (1962).
Библиографическая ссылка [12] Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Reviews, 40, 1699-1734 (1987).
Библиографическая ссылка [13] Paullet, J. E. and Polignone, D. A.: Existence and a priori bounds for the finite torsion solution for a class of general Blatz-Ko materials. Math. Mech. Solids, 1, 315-326 (1996).
Библиографическая ссылка [14] Truesdell, C. and Noll, W.: The nonlinear field theories of mechanics, in Handbuch der Physik, 111/3, ed., S. Flugge, Springer, Berlin, 1965.
Библиографическая ссылка [15] Green, A. E. and Zerna, W.: Theoretical Elasticity, Oxford University Press, London, 1968.
Библиографическая ссылка [16] Ogden, R. W.: Nonlinear Elastic Deformations, Ellis Horwood, Chichester, 1984.
Библиографическая ссылка [17] Carroll, M. M. and Horgan, C. O.: Finite strain solutions for a compressible elastic solid. Q. Appl. Math., 48, 767-780 (1990).
Библиографическая ссылка [18] Horgan, C. O.: Remarks on ellipticity for the generalized Blatz-Ko constitutive model for a compressible nonlinearly elastic solid. J. Elasticity, 42, 165-176 (1996).
Библиографическая ссылка [19] Knowles, J. K. and Sternberg, E.: On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elasticity, 5, 341-361 (1975).
Библиографическая ссылка [20] Horgan, C. O. and Polignone, D. A.: A note on the pure torsion of a circular cylinder for a compressible nonlinearly elastic material with nonconvex strain energy. J. Elasticity, 37, 167-178 (1995).

Скрыть метаданые