Автор |
Mariano, Paolo, Maria |
Автор |
Augusti, Giuliano |
Дата выпуска |
1998 |
dc.description |
In the present paper, a continuum model used to describe brittle microcracked bodies is proposed. The configuration of the body is represented by two fields: the displacement field and an appropriate approximation of the microcrack density. The evolution of the latter field is regulated by the balance of the actions of the microcracks on each other. Moreover, the introduction of a damage entropy flux in the Clausius-Duhem inequality allows one to obtain appropriate criteria of damage growth directly from balance equations. The mathematical structure of the model thus obtained is different from those based on internal variable schemes and allows one to overcome some of their theoretical shortcomings. A simple example, although limited to an elastostatic case, allows one to recognize the basic difference between the model presented here and the models with internal variables, and to underline the potentialities of the proposed approach. |
Издатель |
Sage Publications |
Название |
Multifield Description of Microcracked Continua: A Local Model |
Тип |
Journal Article |
DOI |
10.1177/108128659800300204 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
3 |
Первая страница |
183 |
Последняя страница |
200 |
Аффилиация |
Augusti, Giuliano, Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma "La Sapienza," 00184 Roma, Italy |
Выпуск |
2 |
Библиографическая ссылка |
[1] Krajcinovic, D.: Damage Mechanics, North-Holland, Amsterdam, 1996. |
Библиографическая ссылка |
[2] Capriz, G. and Giovine, P.: Remedy to omissions in a tract on continua with microstructure. Proc. XIII National Congress of the Italian Association of Theoretical and Applied Mechanics, AIMETA, Siena, 1997. |
Библиографическая ссылка |
[3] Di Carlo, A.: A non-standard format for continuum mechanics, in Contemporary Research in the Mechanics and Mathematics of Materials, pp. 92-104, eds., R. C. Batra and M. F. Beatty, CIMNE, Barcelona, 1996. |
Библиографическая ссылка |
[4] Lubarda, V. A. and Krajcinovic, D.: Damage tensors and the crack density distribution. Int. J. Solids Struct., 30, 2859-2877 (1993). |
Библиографическая ссылка |
[5] Mariano, P. M.: Natural entropies in the state space of damaged bodies. Z. Angew. Math. Phys. ZAMP, 48, 1002-1011 (1997). |
Библиографическая ссылка |
[6] Liu, I.-S.: On entropy flux-heat flux relation in thermodynamics with Lagrange multipliers. Continuum Mech. Thermodyn., 8, 247-256 (1996). |
Библиографическая ссылка |
[7] Mariano, P. M. and Augusti, G.: Some axioms and theorems in damage mechanics and fatigue of materials. Int. J. Solids Struct., 34, 3337-3350 (1997). |
Библиографическая ссылка |
[8] Bazant, Z. P. and Pijauder-Cabot, G.: Nonlocal continuum damage, localization instability and convergence. ASME J. Appl. Mech., 55, 287-293 (1988). |
Библиографическая ссылка |
[9] Pijauder-Cabot, G. and Benallal, H.: Strain localization and bifurcation in a nonlocal continuum. Int. J. Solids Struct., 30, 1761-1775 (1993). |
Библиографическая ссылка |
[10] Brekelmans, W. A.: Nonlocal formulation of the evolution of damage in a one-dimensional configuration. Int. J. Solids Struct., 30, 1503-1512 (1993). |
Библиографическая ссылка |
[11] Xia, S., Takezono, S., and Tao, K.: Nonlocal elastic damage near crack tip. Int. J. Fract., 62, 87-95 (1993). |
Библиографическая ссылка |
[12] Benallal, A. and Tvergaard, V.: Nonlocal continuum effects on bifurcation in the plane strain tension-compression test, Report No. 490, Technical University of Denmark, 1994. |
Библиографическая ссылка |
[13] Morro, A.: A Gronwall-like inequality and its application to continuum thermodynamics. Boll. UMI, I-B, 553-562 (1981). |
Библиографическая ссылка |
[14] Morro, A. and Ruggeri, T.: Propagazione del Calore ed Equazioni Costitutive. Quaderni del GNFM, Bologna, 1984. |
Библиографическая ссылка |
[15] Segev, R.: A geometrical framework for the statics of materials with microstructure. Math. Models Meth. Appl. Sci., 4, 871-897 (1994). |
Библиографическая ссылка |
[16] Capriz, G. and Virga, E. G.: Interaction in general continua with microstructure. Arch. Ration. Mech. Anal., 109, 323-342 (1990). |
Библиографическая ссылка |
[17] Krajcinovic, D. and Mastilovic, S.: Some fundamental issues of damage mechanics. Mech. Mat., 21, 217-230 (1995). |
Библиографическая ссылка |
[18] Edelen, D.G.B.: Nonlocal field theories, in Continuum Physics, IV, ed., A. C. Eringen, Academic Press, New York, 1976. |
Библиографическая ссылка |
[19] Noll, W.: The geometry of contact, separation and reformation of continuous bodies. Arch. Ration. Mech. Anal., 122, 197-212 (1993). |
Библиографическая ссылка |
[20] Mariano, P. M.: Some remarks on the variational description of microcracked bodies. Int. J. Non-Linear Mech., in press. |
Библиографическая ссылка |
[21] Fletcher, D. C.: Conservation laws in linear elastodynamics. Arch. Ration. Mech. Anal., 60, 329-353 (1976). |
Библиографическая ссылка |
[22] Nunziato, J. W. and Cowin, S. C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal., 72, 175-201 (1979). |
Библиографическая ссылка |
[23] Lemaitre, J.: A Course on Damage Mechanics, Springer-Verlag, Berlin, 1992. |
Библиографическая ссылка |
[24] Baldacci, R.: Scienza delle Costruzioni, UTET, Torino, 1970. |
Библиографическая ссылка |
[25] Frdmond, M. and Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct., 33, 1083-1103 (1996). |
Библиографическая ссылка |
[26] Mariano, P. M. and Trovalusci, P.: Constitutive relations for elastic microcracked bodies: From a lattice model to a multifield continuum description. Int. J. Damage Mech., in press. |
Библиографическая ссылка |
[27] Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal., 90, 43-56 (1985). |