Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Leslie, D., J.
Автор Scorr, N., H.
Дата выпуска 1998
dc.description This article is concerned with longitudinal wave propagation in an isotropic thermoelastic material that is nearly incompressible at either uniform temperature or uniform entropy. A dimensionless effective bulk modulus X is defined such that X-+ oo corresponds to incompressibility at uniform temperature. For 0 < X < 1, both longitudinal waves are stable, but for X > 1, one is stable and the other unstable. If X = 1, there is only one propagating mode, and this is stable. Another dimensionless effective bulk modulus X is defined such that X -+ oo corresponds to incompressibility at uniform entropy. For 0 < X < oo, both longitudinal waves are stable. Making the identification X = x/(1-X), among others, enables the equivalence of the two types of near constraint to be demonstrated. In particular, X -* oo corresponds to-+ 1-, so that incompressibility at uniform entropy corresponds to near incompressibility at constant temperature. Many graphical results are presented to illustrate various points of theory.
Издатель Sage Publications
Название Near Incompressibility at Uniform Temperature or Entropy in Isotropic Thermoelasticity
Тип Journal Article
DOI 10.1177/108128659800300301
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 3
Первая страница 243
Последняя страница 275
Аффилиация Scorr, N., H., School of Mathematics, University of East Anglia, Norwich NR4 7TJ, U.K.
Выпуск 3
Библиографическая ссылка [1] Truesdell, C. and Noll,W.: The Non-Linear Field Theoriesof Mechanics. Handbuchder Physik, 1113, Springer-Verlag, New York, 1965.
Библиографическая ссылка [2] Green, A. E., Naghdi, P. M., and Trapp, J. A.: Thermodynamics of a continuum with internal constraints. International Journal of Engineering Science, 8, 891-908 (1970).
Библиографическая ссылка [3] Gurtin, M. E. and Podio Guidugli, P.: The thermodynamics of constrained materials. Archivefor Rational Mechanics and Analysis, 51, 192-208 (1973).
Библиографическая ссылка [4] Casey, J. and Krishanaswamy, S.: On constrained thernoelastic materials, in Contemporary Research in Mechanics and Mathematics of Materials, pp. 359-371, eds., R. C. Batra and M. F. Beatty, CIMNE, 1996.
Библиографическая ссылка [5] Casey, J.: A treatment of internally constrained materials. Journal of Applied Mechanics, 62, 542-544 (1995) and 63-63, 240-240, (1996).
Библиографическая ссылка [6] Chadwick, P.: Interchange of modal properties in the propagation of harmonic waves in heat-conducting materials. Bulletin of the Australian Mathematical Society, 8, 75-92 (1973).
Библиографическая ссылка [7] Chadwick, P.: Basic properties of plane harmonic waves in a prestressed heat-conducting elastic material. Journal of Thermal Stresses, 2, 193-214 (1979).
Библиографическая ссылка [8] Scott, N. H.: A theorem in thermoelasticity and its application to linear stability. Proceedings of the Royal Society of London, Series A, 424, 143-153 (1989).
Библиографическая ссылка [9] Manacorda, T.: Onde elementari nella termoelasticita di solidi incomprimibili. Atti dell'Accademia delle scienze, Torino, 101, 503-509 (1967).
Библиографическая ссылка [10] Beevers, C. E.: Finite waves in thermoelasticity. PhlE. thesis, University of Manchester, 1969.
Библиографическая ссылка [11] Chadwick, P. and Scott, N. H.: Linear dynamical stability in constrained thermoelasticity: I. Deformation-temperature constraints. Quarterly Journal of Mechanics and Applied Mathematics, 45, 641-650 (1992).
Библиографическая ссылка [12] Scott, N. H.: Linear dynamical stability in constrained thermoelasticity: II. Deformation-entropy constraints. Quarterly Journal of Mechanics and Applied Mathematics, 45, 651-662 (1992).
Библиографическая ссылка [13] Scott, N. H.: Connections between deformation-temperature and deformation-entropy constraints and nearconstraints in thermoelasticity. International Journal of Engineering Science, 34, 1689-1704 (1996).
Библиографическая ссылка [14] Leslie, D. J. and Scott, N. H.: Incompressibility at uniform temperature or entropy in isotropic thermoelasticity. Quarterly Journal of Mechanics and Applied Mathematics, 51, 191-211 (1998).
Библиографическая ссылка [15] Leslie, D. J. and Scott, N. H.: Thermoelastic wave stability in the presence of thermomechanical constraints, in Proceedings of the 3rd International Conference on Nonlinear Mechanics, eds., Chien Wei-zang and Cheng Changjun, Shanghai Press, Shanghai, 270-276, 1998.
Библиографическая ссылка [16] Alts, T.: The principle of determinism and thermodynamics of simple fluids with thermo-kinematic constraints. Journal of Non-Equilibrium Thermodynamics, 10, 145-162 (1985).

Скрыть метаданые