Автор |
Schiavone, Peter |
Автор |
Shen, Xiaofeng |
Дата выпуска |
1998 |
dc.description |
The boundary integral equation method is used to solve the problem corresponding to antiplane shear deformation of a homogeneous and anisotropic linearly elastic solid whose cross-section is bounded by an arbitrary (smooth) closed curve. The solution is found in the form of a single-layer potential based on the principal fundamental solution of antiplane shear. Uniqueness and existence results are established in the appropriate function spaces. An example of an elastic solid with an elliptic cross-section is used to illustrate the theory. |
Издатель |
Sage Publications |
Название |
On an Integral Solution of the Antiplane Shear Problem |
Тип |
Journal Article |
DOI |
10.1177/108128659800300305 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
3 |
Первая страница |
319 |
Последняя страница |
330 |
Аффилиация |
Shen, Xiaofeng, Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8 |
Выпуск |
3 |
Библиографическая ссылка |
[1] Horgan, C. O.: Anti-plane shear deformations in linear and nonlinear solid quad mechanics. SIAM Review, 37, 53-81 (1995). |
Библиографическая ссылка |
[2] Kupradze, V. D.: Potential Methods in the Theory of Elasticity, Israel Program for Scientific Translations, Jerusalem, 1965. |
Библиографическая ссылка |
[3] Constanda, C.: The boundary integral equation method in plane elasticity. Proc. Amer Math. Soc., 123, 3385-3396 (1995). |
Библиографическая ссылка |
[4] Constanda, C.: A Mathematical Analysis of Bending of Plates with Transverse Shear Deformation, Longman Scientific & Technical, Harlow, U.K., 1990. |
Библиографическая ссылка |
[5] Mikhlin, S. G.: Linear Equations of Mathematical Physics, Holt, Rinehart & Winston, New York, 1967. |
Библиографическая ссылка |
[6] Muskhelishvili, N. I.: Singular Integral Equations, Noordhoff, Groningen, The Netherlands, 1946. |