Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ericksen, J., L.
Дата выпуска 1998
dc.description In considering crystal symmetries, crystallographers tend to think in terms of particular configurations. In using nonlinear continuum theory to analyze such things as phase transitions and twinning, one needs to consider a variety of configurations having different symmetries. Correlating these leads to some unanswered questions in crystallography. This article deals with one that relates to continuum descriptions of crystal multilattices. Briefly, one can encounter ambiguities in describing symmetries of configurations for a subset of the configurations of interest. Primarily, the aim here is to characterize such subsets.
Издатель Sage Publications
Название On Nonessential Descriptions of Crystal Multilattices
Тип Journal Article
DOI 10.1177/108128659800300401
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 3
Первая страница 363
Последняя страница 392
Выпуск 4
Библиографическая ссылка [1] Ericksen, J. L.: Equilibrium theory for X-ray observations of crystals. Archive for Rational Mechanics and Analysis, 139, 181-200 (1997).
Библиографическая ссылка [2] Zanzotto, G.: On the material symmetry group of elastic crystals and the Born rule. Archive for Rational Mechanics and Analysis, 121, 1-36 (1992).
Библиографическая ссылка [3] Pitteri, M.: On v + 1 lattices. Journal of Elasticity, 15, 3-25 (1985).
Библиографическая ссылка [4] Pitteri, M.: Geometry and symmetry of multi-lattices. International Journal of Plasticity, 14, 139-157 (1988).
Библиографическая ссылка [5] Mac Duffee, C. C.: An Introduction to Abstract Algebra, John Wiley, New York, 1940.
Библиографическая ссылка [6] Fortes, M. A.: N-dimensional coincidence-site-lattice theory. Acta Crystallographica, A39, 351-357 (1983).
Библиографическая ссылка [7] Pitteri, M. and Zanzotto, G.: Beyond space groups: The arithmetic symmetry of deformable lattices. Acta Crystallographica, 154, 359-373 (1989).
Библиографическая ссылка [8] Pitteri, M. and Zanzotto, G.: On the definition and classification of Bravais lattices. Acta Crystallographica, A52, 830-838 (1996).
Библиографическая ссылка [9] Pitteri, M. and Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals, Chapman and Hall, London, forthcoming.

Скрыть метаданые