Автор |
Haughton, D., M. |
Дата выпуска |
1998 |
dc.description |
The author looks at ways of generating exact solutions for elastic membranes. Several methods are discussed using the radial expansion of a disk as an example. First, the author uses known solutions for three-dimensional plane strain deformations of a cylinder and show that these can be interpreted as membrane solutions. Second, the author shows how to generate new exact solutions for the plane strain problem using a technique in which the equilibrium equations are decoupled into two sets of equations: one for the deformation and one for the required strain energy function. Both two-and three-dimensional membrane theories are considered, and some differences are highlighted. |
Издатель |
Sage Publications |
Название |
Exact Solutions for Elastic Membrane Disks |
Тип |
Journal Article |
DOI |
10.1177/108128659800300402 |
Print ISSN |
1081-2865 |
Журнал |
Mathematics and Mechanics of Solids |
Том |
3 |
Первая страница |
393 |
Последняя страница |
410 |
Аффилиация |
Haughton, D., M., Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland |
Выпуск |
4 |
Библиографическая ссылка |
[1] Blatz, P. J. and Ko, W. L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol., 6, 223-251 (1962). |
Библиографическая ссылка |
[2] Ogden, R. W. and Isherwood, D. A.: Solutions of some finite plane strain problems for compressible elastic solids. Q. J. Mech. Appl. Math., 31, 219-249 (1978). |
Библиографическая ссылка |
[3] Ogden, R. W.: Non-Linear Elastic Deformations, Ellis Horwood, Chichester1984. |
Библиографическая ссылка |
[4] Haughton, D. M.: Inflation and bifurcation of thick-walled compressible elastic spherical shells. IMA J. Appl. Math., 39, 259-272 (1987). |
Библиографическая ссылка |
[5] Carroll, M. M.: Finite strain solutions in compressible isotropic elasticity. J. Elasticity, 20, 65-93 (1988). |
Библиографическая ссылка |
[6] Carroll, M. M. and Horgan, C. O.: Finite strain solutions for a compressible elastic solid. Q. Applied Math., 48, 767-780 (1990). |
Библиографическая ссылка |
[7] Haughton, D. M. and McKay, B. A.: Wrinkling of annular discs subjected to radial displacements. Int. J. Eng. Sci., 33, 335-350 (1995). |
Библиографическая ссылка |
[8] Haughton, D. M.: An exact solution for the stretching of elastic membranes containing a hole or inclusion. Mech. Res. Comm., 18,29-39 (1991). |
Библиографическая ссылка |
[9] Steigmann, D. J.: Tension field theory. Proc. Roy. Soc. Lond., A429, 141-173 (1990). |
Библиографическая ссылка |
[10] Green, A. E. and Adkins, J. E.: Large Elastic Deformations, 2nd ed., Clarendon, Oxford, UK, 1970. |
Библиографическая ссылка |
[11] Nagdi, P. M. and Tang, P. Y.: Large deformation possible in every isotropic elastic membrane. Phil. Trans. R. Soc. Lond., A287, 145-187 (1977). |
Библиографическая ссылка |
[12] Haughton, D. M.: Cavitation in compressible elastic membranes. Int. J. Eng. Sci., 28, 163-168 (1990). |
Библиографическая ссылка |
[13] Steigmann, D.: Cavitation in elastic membranes: An example. J. Elasticity, 28, 277-287 (1992). |
Библиографическая ссылка |
[14] Aron, M.: On a class of plane radial deformations of compressible nonlinearly elastic solids. IMA J. Appl. Math., 52, 289-296 (1994). |
Библиографическая ссылка |
[15] Murphy, J. G.: A family of solutions describing plane strain cylindrical inflation in finite compressible elasticity. J. Elasticity, 1-11 (1996). |
Библиографическая ссылка |
[16] Haughton, D. M. and Ogden, R. W.: On the incremental equations in non-linear elasticity: I. Membrane theory. J. Mech. Phys. Solids, 26, 93-110 (1978). |
Библиографическая ссылка |
[17] Carroll, M. M.: On obtaining closed form solutions for compressible nonlinearly elastic materials. ZAMP, 46, s126-s145 (1995). |
Библиографическая ссылка |
[18] John, F.: Plane strain problems for a perfectly elastic material of Harmonic type. Comm. Pure Appl. Math., 13, 239-296 (1960). |
Библиографическая ссылка |
[19] Hill, J. M.: Cylindrical and spherical inflation in compressible finite elasticity. IMA J. Appl. Math., 50, 195-201 (1993). |