Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Haughton, D., M.
Дата выпуска 1998
dc.description The author looks at ways of generating exact solutions for elastic membranes. Several methods are discussed using the radial expansion of a disk as an example. First, the author uses known solutions for three-dimensional plane strain deformations of a cylinder and show that these can be interpreted as membrane solutions. Second, the author shows how to generate new exact solutions for the plane strain problem using a technique in which the equilibrium equations are decoupled into two sets of equations: one for the deformation and one for the required strain energy function. Both two-and three-dimensional membrane theories are considered, and some differences are highlighted.
Издатель Sage Publications
Название Exact Solutions for Elastic Membrane Disks
Тип Journal Article
DOI 10.1177/108128659800300402
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 3
Первая страница 393
Последняя страница 410
Аффилиация Haughton, D., M., Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland
Выпуск 4
Библиографическая ссылка [1] Blatz, P. J. and Ko, W. L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol., 6, 223-251 (1962).
Библиографическая ссылка [2] Ogden, R. W. and Isherwood, D. A.: Solutions of some finite plane strain problems for compressible elastic solids. Q. J. Mech. Appl. Math., 31, 219-249 (1978).
Библиографическая ссылка [3] Ogden, R. W.: Non-Linear Elastic Deformations, Ellis Horwood, Chichester1984.
Библиографическая ссылка [4] Haughton, D. M.: Inflation and bifurcation of thick-walled compressible elastic spherical shells. IMA J. Appl. Math., 39, 259-272 (1987).
Библиографическая ссылка [5] Carroll, M. M.: Finite strain solutions in compressible isotropic elasticity. J. Elasticity, 20, 65-93 (1988).
Библиографическая ссылка [6] Carroll, M. M. and Horgan, C. O.: Finite strain solutions for a compressible elastic solid. Q. Applied Math., 48, 767-780 (1990).
Библиографическая ссылка [7] Haughton, D. M. and McKay, B. A.: Wrinkling of annular discs subjected to radial displacements. Int. J. Eng. Sci., 33, 335-350 (1995).
Библиографическая ссылка [8] Haughton, D. M.: An exact solution for the stretching of elastic membranes containing a hole or inclusion. Mech. Res. Comm., 18,29-39 (1991).
Библиографическая ссылка [9] Steigmann, D. J.: Tension field theory. Proc. Roy. Soc. Lond., A429, 141-173 (1990).
Библиографическая ссылка [10] Green, A. E. and Adkins, J. E.: Large Elastic Deformations, 2nd ed., Clarendon, Oxford, UK, 1970.
Библиографическая ссылка [11] Nagdi, P. M. and Tang, P. Y.: Large deformation possible in every isotropic elastic membrane. Phil. Trans. R. Soc. Lond., A287, 145-187 (1977).
Библиографическая ссылка [12] Haughton, D. M.: Cavitation in compressible elastic membranes. Int. J. Eng. Sci., 28, 163-168 (1990).
Библиографическая ссылка [13] Steigmann, D.: Cavitation in elastic membranes: An example. J. Elasticity, 28, 277-287 (1992).
Библиографическая ссылка [14] Aron, M.: On a class of plane radial deformations of compressible nonlinearly elastic solids. IMA J. Appl. Math., 52, 289-296 (1994).
Библиографическая ссылка [15] Murphy, J. G.: A family of solutions describing plane strain cylindrical inflation in finite compressible elasticity. J. Elasticity, 1-11 (1996).
Библиографическая ссылка [16] Haughton, D. M. and Ogden, R. W.: On the incremental equations in non-linear elasticity: I. Membrane theory. J. Mech. Phys. Solids, 26, 93-110 (1978).
Библиографическая ссылка [17] Carroll, M. M.: On obtaining closed form solutions for compressible nonlinearly elastic materials. ZAMP, 46, s126-s145 (1995).
Библиографическая ссылка [18] John, F.: Plane strain problems for a perfectly elastic material of Harmonic type. Comm. Pure Appl. Math., 13, 239-296 (1960).
Библиографическая ссылка [19] Hill, J. M.: Cylindrical and spherical inflation in compressible finite elasticity. IMA J. Appl. Math., 50, 195-201 (1993).

Скрыть метаданые