Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Kerr, G.
Автор Melrose, G.
Автор Tweed, J.
Дата выпуска 1998
dc.description Motivated by the increased use of fiber-reinforced materials, the authors illustrate how the effective elastic modulus of an isotropic material can be increased by the insertion of rigid inclusions. Specifically, the authors consider the two-dimensional antiplane shear problem for a strip of material. The strip is reinforced by introducing a periodic array of ribbon-like, rigid inclusions perpendicular to the faces of the strip. The strip is then subjected to a prescribed uniform displacement difference between its faces. The problem is reduced in standard fashion to a mixed-boundary value problem in a rectangular domain, whose closed-form solution, given in terms of integrals of Jacobian elliptic functions, is obtained via triple sine series techniques. The effective shear modulus of the reinforced strip can now be calculated and compared with the shear modulus of a strip without inclusions. Also obtained are the stress singularity factors at the end tips of the inclusions. Numerical results are presented for several different reinforcement geometries.
Издатель Sage Publications
Название Antiplane Shear of a Strip Containing a Periodic Array of Rigid Line Inclusions
Тип Journal Article
DOI 10.1177/108128659800300407
Print ISSN 1081-2865
Журнал Mathematics and Mechanics of Solids
Том 3
Первая страница 505
Последняя страница 512
Аффилиация Kerr, G., New Mexico Tech
Аффилиация Tweed, J., Old Dominion University
Выпуск 4
Библиографическая ссылка [1] Atkin, R. J. and Fox, N.: An Introduction to the Theory of Elasticity, Longman, 1980.
Библиографическая ссылка [2] Horgan, C. O.: Anti-plane shear deformations in linear and nonlinear solid mechanics. Siam Review, 37, 53-81 (1995).
Библиографическая ссылка [3] Oberhettinger, F.: Fourier Expansions, Academic Press, New York, 1973.
Библиографическая ссылка [4] Tricomi, F. G.: Integral Equations, Dover, UK, 1985.
Библиографическая ссылка [5] Woods, L. C.: The Theory of Subsonic Plane Flow, Cambridge University Press, Cambridge, UK, 1961.
Библиографическая ссылка [6] Byrd, P. F. and Friedman, M. D.: Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, New York, 1971.

Скрыть метаданые