Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Bainian Liu
Автор Aguirre, Fernando, J.
Дата выпуска 1990
dc.description This paper discusses an efficient method for handling time dependent boundary conditions with the DSS/2 differential equation solver. The method was evaluated by using it in the numerical solution of a diffusion problem. The proposed method is also particularly useful for boundary conditions in which only derivatives of the depend ent variables are involved. The method is based on transforming the boundary conditions at the interface to a set of algebraic equations which must be solved simultaneously at each integra tion step. Both algebraic and numerical solutions of this set of equations are discussed, and the relative merits of each one of these solutions are evaluated. The proposed method provides significant improvements in computation times and is capable of handling more complex boundary conditions as compared to other conventional methods.
Издатель Sage Publications
Название An efficient method for handling time-dependent boundary conditions with the DSS/2 differential equation solver
Тип Other
DOI 10.1177/003754979005400604
Print ISSN 0037-5497
Журнал Simulation
Том 54
Первая страница 274
Последняя страница 279
Аффилиация Bainian Liu, Chemical and Metallurgical Engineering Department University of Nevada-Reno Reno, NV 89557
Аффилиация Aguirre, Fernando, J., Chemical and Metallurgical Engineering Department University of Nevada-Reno Reno, NV 89557
Выпуск 6
Библиографическая ссылка Aguirre, F.J., Klinzing, G.E., Chiang, S.H., Leaf, G.K. and Minkoff, M., "Diffusion Model for Simultaneous Mass and Heat Transfer in Partially Miscible Liquid Systems: Experimental Findings and Numerical Simulation", Chemical Engineering Science, 40, 1449-1456 (1985 ).
Библиографическая ссылка Crank, J., The Mathematics of Diffusion, pp.38-49, Clarendon Press, Oxford (1975).
Библиографическая ссылка Davis, M.E., Numerical Methods & Modeling for Chemical Engineers, John Wiley & Sons, p.163 and p.215 (1984).
Библиографическая ссылка Hindmarsh, A.C., "LSODE and LSODI, Two New Initial Value Ordinary Differential Equation Solvers", ACM-Signum Newsletter, 15, 10-11 (1980).
Библиографическая ссылка Hull, T.E., "Numerical Solutions of Initial Value Problems for Ordinary Differential Equations", Symposium on Numerical Solutions of Boundary Value for Ordinary Differential Equations, University of Maryland, Baltimore County, 3-26 (1974).
Библиографическая ссылка Pirkle, J.C. and Schiesser, W.E., "Method of Lines Solution of Two Dimensional Reactor Models", Proceedings of the 1983 Summer Computer Simulation Conference , Vancouver, Canada, July 11-13, 60- 65 (1983).
Библиографическая ссылка Pirkle, J.C. and Schiesser, W.E., "Dynamic Simulation of Complex, Multi-Stage Separation and Reactor Systems by a Modified DSS/2 Simulator", 1986 AIChE Annual Meeting, Miami Beach, FL, Nov. 2-7 ( 1986).
Библиографическая ссылка Schiesser, W.E., "Introductory Programming Manual", DSS/2 Manual No.1, Lehigh University (1976).
Библиографическая ссылка Schiesser, W.E., "An Introduction to the Numerical Method of Lines Integration of Partial Differential Equations", DSS/2 Manual No.2, Lehigh University , 41-47 (1977).
Библиографическая ссылка Schiesser, W.E., "Variable-Grid Spatial Differentiator in the Numerical Method of Lines ", DSS/2 Manual No.6, Lehigh University ( 1984).
Библиографическая ссылка Smith, C.A. and Corripio, A.B., Principles and Practice of Automatic Process Control, John Wiley & Sons, pp.491-493 (1984).

Скрыть метаданые