Автор |
Walterscheid, R. L. |
Автор |
Schubert, G. |
Дата выпуска |
1989 |
dc.description |
A dynamical‐chemical model is used to determine concentration fluctuations, fluxes, mixing ratio fluxes, and flux divergences of the minor constituents OH, O<sub>3</sub>, HO<sub>2</sub>, H and O driven by gravity waves propagating through the nightside mesopause region. The model includes a five reaction chemical scheme for the production and loss of the minor species and the complete dynamics of linearized gravity waves in a motionless atmosphere. Wave fluxes of O<sub>3</sub> and OH are small except for a 5 km thick region at about the level of the mesopause wherein the fluxes are large and downward. Wave‐induced transport of O<sub>3</sub> and OH opposes diffusive down‐gradient transport of these species which would result in upward fluxes above ∼ 75 km for OH and above ∼ 81 km for O<sub>3</sub>, except for localized regions. Gravity wave fluxes of O<sub>3</sub> can cause large changes in O<sub>3</sub> number densities in times comparable to the O<sub>3</sub> chemical time constant and they are therefore major contributors to the balance that determines O<sub>3</sub> concentrations at the mesopause. Because of the short chemical time constant of OH, gravity wave fluxes of OH do not directly change OH concentrations. However, wave fluxes can alter OH concentrations indirectly through the modifications to O<sub>3</sub> number densities and the rapid adjustment of OH to O<sub>3</sub>. By modulating the intensity and intrinsic frequency of gravity wave activity, tides can force diurnal and semidiurnal variations in the divergence of O<sub>3</sub> and OH wave fluxes and in the concentrations or O<sub>3</sub> and OH. Gravity wave fluxes are able to alter the mixing ratios of O<sub>3</sub> and OH as a consequence of the chemistry. The coupling of wave dynamics and chemistry acts to reduce the mixing ratios of O<sub>3</sub> and OH around 80 km. |
Формат |
application.pdf |
Копирайт |
Copyright 1989 by the American Geophysical Union. |
Тема |
Atmospheric Composition and Structure |
Тема |
Atmospheric Composition and Structure: Ion chemistry of the atmosphere |
Тема |
Atmospheric Composition and Structure: Middle atmosphere—composition and chemistry |
Тема |
Atmospheric Processes |
Тема |
Meteorology and Atmospheric Dynamics: Mesoscale meteorology |
Тема |
Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics |
Тема |
Meteorology and Atmospheric Dynamics: Waves and tides |
Название |
Gravity wave fluxes of O<sub>3</sub> and OH at the nightside mesopause |
Тип |
article |
DOI |
10.1029/GL016i007p00719 |
Electronic ISSN |
1944-8007 |
Print ISSN |
0094-8276 |
Журнал |
Geophysical Research Letters |
Том |
16 |
Первая страница |
719 |
Последняя страница |
722 |
Аффилиация |
Walterscheid, R. L.; Space Sciences Laboratory, The Aerospace Corporation |
Аффилиация |
Schubert, G.; Space Sciences Laboratory, The Aerospace Corporation |
Выпуск |
7 |
Библиографическая ссылка |
Allen, M.J. I.LunineY. L.Yung, The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 89, 4841–4872, 1984 |
Библиографическая ссылка |
Bjarnason, G. G.S.SolomonR. R.Garcia, Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere, J. Geophys. Res., 92, 5609–5620, 1987 |
Библиографическая ссылка |
Garcia, R. R.S.Solomon, The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850–3868, 1985 |
Библиографическая ссылка |
LeTexier, H.S.SolomonR. R.Garcia, Seasonal variability of the OH Meinel bands, Planet. Space Sci., 35, 977–989, 1987 |
Библиографическая ссылка |
Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981 |
Библиографическая ссылка |
Orlanski, I.K.Bryan, Formation of thermo‐cline step structure by large amplitude internal gravity waves, J. Geophys. Res., 74, 6975–6983, 1969 |
Библиографическая ссылка |
Philbrick, C. R.E. A.MurphyS. P.ZimmermanE. J.FletcherJr.R. O.Olsen, Mesospheric density variability, Space Res., XX, 79–82, 1980 |
Библиографическая ссылка |
Philbrick, C. R.F. J.SchmidelinK. U.GrossmanG.LangD.OffermanK. D.BakerD.KrankowskyU.von Zahn, Density and temperature structure over northern Europe, J. Atmos. Terr. Phys., 47, 159–172, 1985 |
Библиографическая ссылка |
Schoeberl, M. R.D. F.StrobelJ. P.Apruzese, A numerical model of gravity wave breaking and stress in the mesosphere, J. Geophys. Res., 88, 5249–5259, 1983 |
Библиографическая ссылка |
Strobel, D. F., Parameterization of linear wave chemical transport in planetary atmospheres by eddy diffusion, J. Geophys. Res., 86, 9806–9810, 1981 |
Библиографическая ссылка |
Theon, J. S.W.NordbergL. B.KatchenJ. J.Horvath, Some observations on the thermal behavior of the mesosphere, J. Atmos. Sci., 24, 428–438, 1967 |
Библиографическая ссылка |
Walterscheid, R. L.G.SchubertJ. M.Straus, A dynamical‐chemical model of wavedriven fluctuations in OH nightglow, J. Geophys. Res., 92, 1241–1254, 1987 |
Библиографическая ссылка |
Winick, J. R., Photochemical processes in the mesosphere and lower thermosphere, Solar‐Terrestrial Physics, R. L.CarovillanoJ. M.Forbes677–732, D. Riedel, Hingham, Mass, 1983 |