Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Walterscheid, R. L.
Автор Schubert, G.
Дата выпуска 1989
dc.description A dynamical‐chemical model is used to determine concentration fluctuations, fluxes, mixing ratio fluxes, and flux divergences of the minor constituents OH, O<sub>3</sub>, HO<sub>2</sub>, H and O driven by gravity waves propagating through the nightside mesopause region. The model includes a five reaction chemical scheme for the production and loss of the minor species and the complete dynamics of linearized gravity waves in a motionless atmosphere. Wave fluxes of O<sub>3</sub> and OH are small except for a 5 km thick region at about the level of the mesopause wherein the fluxes are large and downward. Wave‐induced transport of O<sub>3</sub> and OH opposes diffusive down‐gradient transport of these species which would result in upward fluxes above ∼ 75 km for OH and above ∼ 81 km for O<sub>3</sub>, except for localized regions. Gravity wave fluxes of O<sub>3</sub> can cause large changes in O<sub>3</sub> number densities in times comparable to the O<sub>3</sub> chemical time constant and they are therefore major contributors to the balance that determines O<sub>3</sub> concentrations at the mesopause. Because of the short chemical time constant of OH, gravity wave fluxes of OH do not directly change OH concentrations. However, wave fluxes can alter OH concentrations indirectly through the modifications to O<sub>3</sub> number densities and the rapid adjustment of OH to O<sub>3</sub>. By modulating the intensity and intrinsic frequency of gravity wave activity, tides can force diurnal and semidiurnal variations in the divergence of O<sub>3</sub> and OH wave fluxes and in the concentrations or O<sub>3</sub> and OH. Gravity wave fluxes are able to alter the mixing ratios of O<sub>3</sub> and OH as a consequence of the chemistry. The coupling of wave dynamics and chemistry acts to reduce the mixing ratios of O<sub>3</sub> and OH around 80 km.
Формат application.pdf
Копирайт Copyright 1989 by the American Geophysical Union.
Тема Atmospheric Composition and Structure
Тема Atmospheric Composition and Structure: Ion chemistry of the atmosphere
Тема Atmospheric Composition and Structure: Middle atmosphere—composition and chemistry
Тема Atmospheric Processes
Тема Meteorology and Atmospheric Dynamics: Mesoscale meteorology
Тема Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics
Тема Meteorology and Atmospheric Dynamics: Waves and tides
Название Gravity wave fluxes of O<sub>3</sub> and OH at the nightside mesopause
Тип article
DOI 10.1029/GL016i007p00719
Electronic ISSN 1944-8007
Print ISSN 0094-8276
Журнал Geophysical Research Letters
Том 16
Первая страница 719
Последняя страница 722
Аффилиация Walterscheid, R. L.; Space Sciences Laboratory, The Aerospace Corporation
Аффилиация Schubert, G.; Space Sciences Laboratory, The Aerospace Corporation
Выпуск 7
Библиографическая ссылка Allen, M.J. I.LunineY. L.Yung, The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 89, 4841–4872, 1984
Библиографическая ссылка Bjarnason, G. G.S.SolomonR. R.Garcia, Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere, J. Geophys. Res., 92, 5609–5620, 1987
Библиографическая ссылка Garcia, R. R.S.Solomon, The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850–3868, 1985
Библиографическая ссылка LeTexier, H.S.SolomonR. R.Garcia, Seasonal variability of the OH Meinel bands, Planet. Space Sci., 35, 977–989, 1987
Библиографическая ссылка Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981
Библиографическая ссылка Orlanski, I.K.Bryan, Formation of thermo‐cline step structure by large amplitude internal gravity waves, J. Geophys. Res., 74, 6975–6983, 1969
Библиографическая ссылка Philbrick, C. R.E. A.MurphyS. P.ZimmermanE. J.FletcherJr.R. O.Olsen, Mesospheric density variability, Space Res., XX, 79–82, 1980
Библиографическая ссылка Philbrick, C. R.F. J.SchmidelinK. U.GrossmanG.LangD.OffermanK. D.BakerD.KrankowskyU.von Zahn, Density and temperature structure over northern Europe, J. Atmos. Terr. Phys., 47, 159–172, 1985
Библиографическая ссылка Schoeberl, M. R.D. F.StrobelJ. P.Apruzese, A numerical model of gravity wave breaking and stress in the mesosphere, J. Geophys. Res., 88, 5249–5259, 1983
Библиографическая ссылка Strobel, D. F., Parameterization of linear wave chemical transport in planetary atmospheres by eddy diffusion, J. Geophys. Res., 86, 9806–9810, 1981
Библиографическая ссылка Theon, J. S.W.NordbergL. B.KatchenJ. J.Horvath, Some observations on the thermal behavior of the mesosphere, J. Atmos. Sci., 24, 428–438, 1967
Библиографическая ссылка Walterscheid, R. L.G.SchubertJ. M.Straus, A dynamical‐chemical model of wavedriven fluctuations in OH nightglow, J. Geophys. Res., 92, 1241–1254, 1987
Библиографическая ссылка Winick, J. R., Photochemical processes in the mesosphere and lower thermosphere, Solar‐Terrestrial Physics, R. L.CarovillanoJ. M.Forbes677–732, D. Riedel, Hingham, Mass, 1983

Скрыть метаданые