Автор |
Ward, William E. |
Автор |
Fomichev, Victor I. |
Дата выпуска |
1993 |
dc.description |
Atomic oxygen affects both the heating and cooling of the mesosphere and lower thermosphere through its recombination and collisional deactivation of CO<sub>2</sub>. Recent increases in the accepted value of the deactivation constant, k<sub>o</sub> in CO<sub>2</sub>‐O collisions enhance the role of the latter process in the dynamics and energy budget of this region. There are strong increases in the radiative cooling due to CO<sub>2</sub> in the 90–120 km region. The sensitivity of the cooling rate in the 15 μm band to variations in atomic oxygen concentration, [O], is enhanced so that the atmosphere in this region is unstable to these variations in concentration. Convection appears possible thereby providing a vertical mixing mechanism which is ineffective in the diffusion of heat but is effective in mixing constituents, and some justification for the use of different eddy diffusivities for heat and constituents. Heating rate calculations are intrinsically more complicated because both the heating and the cooling processes involving atomic oxygen are nonlinear functions of its concentration. The damping of atmospheric waves will be affected because radiative damping will be stronger up to 100 km and the cooling rate dependence on the atomic oxygen mixing ratio affords a new mechanism for photochemical damping. It appears that the overall dynamics and energy budget of this region must be reconsidered. |
Формат |
application.pdf |
Копирайт |
Copyright 1993 by the American Geophysical Union. |
Тема |
Atmospheric Composition and Structure |
Тема |
Atmospheric Composition and Structure: Middle atmosphere—composition and chemistry |
Тема |
Atmospheric Composition and Structure: Thermosphere—composition and chemistry |
Тема |
Atmospheric Processes |
Тема |
Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics |
Тема |
Meteorology and Atmospheric Dynamics: Radiative processes |
Название |
On the role of atomic oxygen in the dynamics and energy budget of the mesosphere and lower thermosphere |
Тип |
article |
DOI |
10.1029/93GL00842 |
Electronic ISSN |
1944-8007 |
Print ISSN |
0094-8276 |
Журнал |
Geophysical Research Letters |
Том |
20 |
Первая страница |
1199 |
Последняя страница |
1202 |
Аффилиация |
Ward, William E.; Institute for Space and Terrestrial Science, York University, Toronto, Canada, M3J 1P3 |
Аффилиация |
Fomichev, Victor I.; Institute for Space and Terrestrial Science, York University, Toronto, Canada, M3J 1P3 |
Выпуск |
12 |
Библиографическая ссылка |
Akmaev, R. A.V. I.FomichevN. M.GavrilovG. M.Shved, Simulation of the zonal mean climatology of the middle atmosphere with a three‐dimensional model for solstice and equinox conditions, J. Atmos. Terr. Phys., 54, 119–128, 1992 |
Библиографическая ссылка |
Bougher, S. W.R. G.Roble, Comparative terrestrial planet thermosphere: 1. Solar cycle variation of global mean temperatures, J. Geophys. Res., 96, 11045–11055, 1991 |
Библиографическая ссылка |
Brasseur, G.D.Offerman, Recombination of atomic oxygen near the mesopause: interpretation of rocket data, J. Geophys. Res., 91, 10818–10824, 1986 |
Библиографическая ссылка |
Colgrove, F. D.W. B.HansonF. S.Johnson, Eddy diffusion and oxygen transport in the lower thermosphère, J. Geophys. Res., 70, 4931–4941, 1965 |
Библиографическая ссылка |
Crutzen, P., Comment on paper ‘Absorption and emission by carbon Dioxide in the mesosphere’ by J. T. Houghton, Quart. J. R. Met. Soc., 96, 767–769, 1970 |
Библиографическая ссылка |
Dickinson, R. E., Infrared radiative cooling in the mesomosphere and lower thermosphere, J. Atmo. Terr. Phys., 46, 995–1008, 1984 |
Библиографическая ссылка |
Dickinson, R. E.E. C.RidleyR. G.Roble, Thermospheric general circulation with coupled dynamics and composition, J. Atmos. Sci., 41, 205–219, 1984 |
Библиографическая ссылка |
Fels, S. B., The radiative damping of short vertical scale waves in the mesosphere, J. Atmos. Sci., 41, 1755–1764, 1984 |
Библиографическая ссылка |
Fomichev, V. I.G. M.Shved, Net radiative heating in the middle atmosphere, J. Atmos. Terr. Phys., 50, 671–688, 1988 |
Библиографическая ссылка |
Fomichev, V. I.A. A.KutepovR. A.AkmaevG. M.Shved, Parameterization of the 15 μm CO2 band cooling in the middle atmosphere (15‐115 km), J. Atmos. Terr. Phys., 55, 7–18, 1993b |
Библиографическая ссылка |
Fox, J. L.S. W.Bougher, Structure, luminosity, and dynamics of the Venus thermosphere, Space Sci., Rev., 55, 357–489, 1991 |
Библиографическая ссылка |
Kumer, J. B.T. C.James, SPIRE data evaluation and nuclear IR fluorescence processes, Report DNA001‐79‐C‐0033, 1983 |
Библиографическая ссылка |
Kutepov, A. A.V. I.Fomichev, Applications of the second‐order escape probability approximation to the solution of the NLTE vibration‐rotation band radiative transfer problem, J. Atmos. Terr. Phys., 55, 1–6, 1993 |
Библиографическая ссылка |
Leovy, C. B., Photochemical Destabilization of Gravity Waves near the Mesopause, J. Atmos. Sci., 23, 223–232, 1966 |
Библиографическая ссылка |
Lindzen, R. S., Turbulence and Stress due to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981 |
Библиографическая ссылка |
Lubkin, F. J., On the extraction of turbulent parameters from atmospheric density fluctuations, J. Geophys. Res., 1993 |
Библиографическая ссылка |
Mlynzak, M. G.S.Solomon, A detailed evaluation of the heating efficiency in the middle atmosphere, J. Geophys. Res., 1993 |
Библиографическая ссылка |
Offerman, D.P. R.FriedrichU.Von Zahn, Neutral gas composition measurements between 80 and 120 km, Planet. Space Sci., 7, 747–764, 1981 |
Библиографическая ссылка |
Rogers, C. D.F. W.TaylorA. H.MuggeridgeM.López‐PuertezM. A.López‐Valverde, Local thermodynamic equilibrium of carbon dioxide in the upper atmosphere, Geophys. Res. Lett., 19, 589–592, 1992 |
Библиографическая ссылка |
Sharma, R. D.P. P.Wintersteiner, Role of carbon dioxide in cooling planetary atmospheres, Geophys. Res. Lett., 17, 2201–2204, 1990 |
Библиографическая ссылка |
Shved, G. M.L. E.KhvorostovskayaI. Y.PotekhinA. I.DemyanikovA. A.KutepovV. I.Fomichev, Measurement of the quenching rate constant for collisions CO2(0110)‐O: The importance of the rate constant magnitude for the thermal regime and radiation of the lower thermosphere, Atmos. and Oceanic Phys., 27, 1991 |
Библиографическая ссылка |
Thomas, R. J., Atomic hydrogen and atomic density in the mesopause region: Global and seasonal variations deduced from Solar Mesosphere Explorer near‐infrared emissions, J. Geophys. Res., 95, 16457, 1990 |
Библиографическая ссылка |
Ward, W. E.Y. J.RochonC.McLandressD. Y.WangJ. R.CriswickB. H.SolheimG. G.Shepherd, Correlations between the mesospheric 0(1S) emission peak intensity and height and temperature at 98 km. using WINDII data, Adv. Space Res, 1993 |
Библиографическая ссылка |
Wintersteiner, P. P.R. H.PicardR. D.SharmaJ. R.WinicR. A.Joseph, Line‐by‐line radiative excitation model for the non‐equilibrium atmosphere: Application to CO2 15‐μm emission, J. Geophys. Res., 97, 18083–18117, 1992 |