Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Gérard, J. C.
Автор Richards, P. G.
Автор Shematovich, V. I.
Автор Bisikalo, D. V.
Дата выпуска 1995
dc.description Exothermic reactions involving metastable neutrals and ions were recently proposed as sources of hot oxygen atoms in addition to the classical O<sub>2</sub><sup>+</sup> and NO<sup>+</sup> dissociative recombination. The Boltzmann equations for thermal and nonthermal populations of O atoms are solved with a Monte Carlo stochastic simulation method. It is shown that the calculated energy distribution functions of O atoms are significantly in nonequilibrium in the transition region between the thermosphere and the exosphere. It is found that the inclusion of additional sources leads to stronger disturbances of the energy distribution function and, as a consequence, increases the nonthermal fraction of hot O atoms. The variation of the vertical distribution of hot O between solar maximum and minimum conditions is also evaluated and shows good agreement with the available experimental evidence.
Формат application.pdf
Копирайт Copyright 1995 by the American Geophysical Union.
Тема Atmospheric Composition and Structure
Тема Atmospheric Composition and Structure: Thermosphere—composition and chemistry
Тема Atmospheric Composition and Structure: Airglow and aurora
Тема Ionosphere
Тема Ionosphere: Ion chemistry and composition
Название The importance of new chemical sources for the hot oxygen geocorona
Тип article
DOI 10.1029/94GL02999
Electronic ISSN 1944-8007
Print ISSN 0094-8276
Журнал Geophysical Research Letters
Том 22
Первая страница 279
Последняя страница 282
Аффилиация Gérard, J. C.; LPAP, Institut d'Ástrophysique, Universite de Liège, Belgium
Аффилиация Richards, P. G.; Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, USA
Аффилиация Shematovich, V. I.; Institute of Astronomy of the Academy of Sciences, Moscow, Russia
Аффилиация Bisikalo, D. V.; Institute of Astronomy of the Academy of Sciences, Moscow, Russia
Выпуск 3
Библиографическая ссылка Bisikalo, D. V., V. I.Shematovich, and J. C.Gérard, A kinetic model of the formation of the hot oxygen geocorona. II. Disturbed geomagnetic conditions, submitted foring publication.
Библиографическая ссылка Cotton, D. M.G. R.GladstoneS.Chakrabarti, Sounding rocket observation of a hot atomic oxygen geocorona, J. Geophys. Res., 98, 21651, 1993
Библиографическая ссылка Hedin, A. E., Hot oxygen geocorona as inferred from neutral exospheric models and mass spectrometer measurements, J. Geophys. Res., 94, 5523, 1989
Библиографическая ссылка Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159, 1991
Библиографическая ссылка Richards, P. G.M. P.HickeyD. G.Torr, New sources for the hot oxygen geocorona, Geophys. Res. Lett., 21, 657, 1994
Библиографическая ссылка Rohrbaugh, R. P.J. S.Nisbet, Effect of energetic oxygen atoms on neutral density models, J. Geophys. Res., 78, 6768, 1973
Библиографическая ссылка Shematovich, V. I.D. V.BisikaloJ. C.Gérard, A kinetic model of the formation of the hot oxygen geocorona. I. Quiet geomagnetic conditions, J. Geophys. Res., 1994
Библиографическая ссылка Torr, M. R.D. G.TorrP. G.RichardsS. P.Yung, Mid‐ and low‐latitude model of thermospheric emissions 1. O+(2P) 7320 A and N2(2P)3371 A, J. Geophys. Res., 95, 21, 147, 1990
Библиографическая ссылка Yee, J. H.J. W.MeriwetherP. B.Hays, Detection of a corona of fast oxygen atoms during solar maximum, J. Geophys. Res., 85, 3396, 1980

Скрыть метаданые