Автор |
Krumbein, W. C. |
Дата выпуска |
1959 |
dc.description |
Trend surface analysis is a procedure for separating the relatively large‐scale systematic changes in mapped data from essentially non‐systematic small‐scale variations due to local effects. The method can be applied to any contour‐type map, and has been used for analysis of gravity maps, isopach maps, facies maps, and maps of igneous and sedimentary rock attributes. When observations can be collected on a rectangular grid, orthogonal polynomial analysis permits convenient separation of the trend from the residuals. When observations are limited in number or are irregularly distributed over the map, non‐orthogonal polynomial analysis can be used to determine at least the linear and quadratic components of the trend. These surfaces and deviations from them have value in geological interpretation, and they suggest that even when the complete trend is known, maps of selected trend components may be useful for examining special problems. Polynomial analysis of maps is facilitated by use of high speed computers. Organization of an IBM 650 program is outlined in this paper. |
Формат |
application.pdf |
Копирайт |
Copyright 1959 by the American Geophysical Union. |
Название |
Trend surface analysis of contour‐type maps with irregular control‐point spacing |
Тип |
article |
DOI |
10.1029/JZ064i007p00823 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research |
Том |
64 |
Первая страница |
823 |
Последняя страница |
834 |
Выпуск |
7 |
Библиографическая ссылка |
Anderson, R. L., T. A.Bancroft, Statistical theory in research, McGraw‐Hill Book Co., New York, 1952. |
Библиографическая ссылка |
Bennett, C. A., N. L.Franklin, Statistical analysis in chemistry and the chemical industry, John Wiley and Sons, New York, 1954. |
Библиографическая ссылка |
BrownJr., W. F., Minimum variance in gravity analysis, Geophysics, 20, 807–828, 1955. |
Библиографическая ссылка |
Delury, D. B., Values and integrals of the orthogonal polynomials up to n = 26, University of Toronto Press, Toronto, Canada, 1950. |
Библиографическая ссылка |
Grant, Fraser, A problem in the analysis of geophysical data, Geophysics, 22, 309–344, 1957. |
Библиографическая ссылка |
Hoel, Paul G., Introduction to mathematical statistics1st ed., John Wiley and Sons, New York, 1947. |
Библиографическая ссылка |
Kendall, M. G., The advanced theory of statistics, II, Charles Griffin and Co., London, 1946. |
Библиографическая ссылка |
Krumbein, W. C., Regional and local components in facies maps, Bull. Am. Assoc. Petrol. Geologists, 40, 2163–2194, 1956. |
Библиографическая ссылка |
Miller, Robert L., Trend surfaces: their application to analysis and description of environments of sedimentation, J. Geol., 64, 425–446, 1956. |
Библиографическая ссылка |
Oldham, C. H. G., D. B.Sutherland, Orthogonal polynomials: their use in estimating the regional effect, Geophysics, 20, 295–306, 1955. |
Библиографическая ссылка |
Swartz, C. A., Some geometrical properties of residual maps, Geophysics, 19, 46–70, 1954. |
Библиографическая ссылка |
Whitten, E. H. T., Composition trends in a granite: modal variation and ghost stratigraphy in part of the Donegal granite, Eire, J. Geophys. Research, 64, 835–848, 1959. |