Автор |
Ishii, M. |
Автор |
Sugiura, M. |
Автор |
Iyemori, T. |
Автор |
Slavin, J. A. |
Дата выпуска |
1992 |
dc.description |
Satellite observations have shown high correlation between magnetic and electric field perturbations in the high‐latitude field‐aligned current regions. The high correlation has been interpreted by two models. In the first, the Static model, the observed perturbations are regarded as being static spatial variations, and the ratio of the orthogonal magnetic and electric field components ΔB<sub>z</sub>/E<sub>x</sub> represents the height‐integrated ionospheric Pedersen conductivity Σ<sub>P</sub>. In the second, Alfvén wave model, the observed perturbations are interpreted as being Doppler‐shifted Alfvén waves, and the inverse of the ratio gives the Alfvén wave velocity V<sub>A</sub>. In this paper we investigate changes of this ratio with spatial scale length, using the DE 2 observations. The ratio ΔB<sub>z</sub>/E<sub>x</sub> is found to change little with scale length for variations of scale lengths longer than 64 km, or 8.0 s in time. While for variations of smaller scale lengths, which are obtained using numerical filters with cutoff periods shorter than 4.0 s, the same ratio shows a significant dependence on scale length. The calculated ratios are nearly equal to Σ<sub>P</sub> based on an ionospheric model for long‐wavelength structures and to 1/V<sub>A</sub> for short‐wavelength variations. The transition from the former to the latter usually begins around 4.0‐8.0 s on the time scale. On the dayside the correlation between ΔB<sub>z</sub> and E<sub>x</sub> is generally high, and the transition is clearly seen. Thus the static model is applicable to valuations of scale lengths greater than 8.0 s (or 64 km); while the Alfvén wave effect becomes increasingly dominant for scale lengths less than 4.0 s (or 32 km). For scale lengths below about 5 km (∼0.6 s) the short‐circuiting effect at ionospheric altitudes higher than the altitudes at which the horizontal Pedersen closure current usually flows becomes appreciable. However, this effect alone cannot explain the observed decrease in the ratio ΔB<sub>z</sub>/μ<sub>0</sub>E<sub>x</sub>. The relation between the ratio ΔB<sub>z</sub>/μ<sub>0</sub>E<sub>x</sub> and the solar zenith angle is consistent with the relationship between the Pedersen conductivity and the solar zenith angle in the published conductivity models. |
Формат |
application.pdf |
Копирайт |
Copyright 1992 by the American Geophysical Union. |
Тема |
IONOSPHERE |
Тема |
Ionosphere/magnetosphere interactions |
Тема |
Auroral ionosphere |
Тема |
Current systems |
Тема |
Electric fields |
Тема |
Ionosphere/magnetosphere interactions |
Тема |
MAGNETOSPHERIC PHYSICS |
Тема |
Magnetosphere/ionosphere interactions |
Тема |
Magnetosphere/ionosphere interactions |
Тема |
Auroral phenomena |
Тема |
Field‐aligned currents and current systems |
Тема |
Electric fields |
Название |
Correlation between magnetic and electric field perturbations in the field‐aligned current regions deduced from DE 2 observations |
Тип |
article |
DOI |
10.1029/92JA00110 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Space Physics |
Том |
97 |
Первая страница |
13877 |
Последняя страница |
13887 |
Выпуск |
A9 |
Библиографическая ссылка |
Bilitza, D., International reference ionosphere: Recent developments, Radio Sci., 21, 343, 1986. |
Библиографическая ссылка |
Burke, W. J., D. A.Hardy, F. J.Rich, M. C.Kelley, M.Smiddy, B.Schuman, R. C.Sagalyn, R. P.Vancour, P. J. L.Widman, S. T.Lai, Electrodynamic structure of the late evening sector of the auroral zone, J. Geophys. Res., 85, 1179, 1980. |
Библиографическая ссылка |
de laBeaujardiere, O., M. J.Baron, V. B.Wickwar, C.Senior, J. V.Evans, MITHRAS: A program of simultaneous radar observations of the high‐latitude auroral zone, reportcontract F49620‐81‐C‐0042SRI International, Menlo Park, Calif., 1982. |
Библиографическая ссылка |
Dubinin, E. M., P. L.Israelevich, N. S.Nikolaeva, Auroral electromagnetic disturbances at an altitude of 900 km: The relationship between the electric and magnetic field variations, Planet. Space Sci., 38, 97, 1990. |
Библиографическая ссылка |
Farthing, W. H., M.Sugiura, B. G.Ledley, L. J.CahillJr., Magnetic field observations on DE‐A and ‐B, Space Sci. Instrum., 5, 551, 1981. |
Библиографическая ссылка |
Forget, B., J.‐C.Cerisier, A.Berthelier, J.‐J.Berthelier, Ionospheric closure of small‐scale Birkeland currents, J. Geophys. Res., 96, 1843, 1991. |
Библиографическая ссылка |
Gurnett, D. A., R. L.Huff, J. D.Menietti, J. L.Burch, J. D.Winningham, S. D.Shawhan, Correlated low‐frequency electric and magnetic noise along the auroral field lines, J. Geophys. Res., 89, 8971, 1984. |
Библиографическая ссылка |
Iyemori, T., A statistical study of ULF waves observed by Magsat at ionospheric altitude, Proc. NIPR Symp. Upper Atmos. Phys., 1, 146, 1988. |
Библиографическая ссылка |
Knudsen, D. J., M. C.Kelley, G. D.Earle, J. F.Vickrey, M.Boehm, Distinguishing Alfvén waves from quasi‐static field structures associated with the discrete aurora: Sounding rocket and HILAT satellite measurements, Geophys. Res. Lett., 17, 921, 1990. |
Библиографическая ссылка |
Langel, R. A., R. H.Estes, G. D.Mead, E. B.Fabiano, E. R.Lancaster, Initial geomagnetic field model from MAGSAT vector data, Geophys. Res. Lett., 7, 793, 1980. |
Библиографическая ссылка |
Matsuoka, A., T.Mukai, H.Hayakawa, Y.‐I.Kohno, K.Tsuruda, A.Nishida, T.Okada, N.Kaya, H.Fukunishi, EXOS‐D observations of electric field fluctuations and charged particle precipitation in the polar cusp, Geophys. Res. Lett., 18, 305, 1991. |
Библиографическая ссылка |
Maynard, N. C., E. A.Bielecki, H. F.Burdick, Instrumentation for vector electric field measurements from DE‐B, Space Sci. Instrum., 5, 523, 1981. |
Библиографическая ссылка |
Mehta, N. C., Ionospheric electrodynamics and its coupling to the magnetosphere, Ph.D. thesis,Univ. of Calif.,San Diego,1979. |
Библиографическая ссылка |
Rasmussen, C. E., R. W.Schunk, V. B.Wickwar, A photochemical equilibrium model of ionospheric conductivity, J. Geophys. Res., 93, 9831, 1988. |
Библиографическая ссылка |
Reid, G. C., Ionospheric effects of electrostatic fields generated in the outer magnetosphere, J. Res. Natl. Bur. Stand., Sect.D, 696, 827, 1965. |
Библиографическая ссылка |
Rich, F. J., C. A.Cattell, M. C.Kelley, W. J.Burke, Simultaneous observations of auroral zone electrodynamics by two satellites: Evidence for height variations in the topside ionosphere, J. Geophys. Res., 86, 8929, 1981. |
Библиографическая ссылка |
Robinson, R. M., R. R.Vondrak, Electrodynamic properties of the evening sector ionosphere within the region 2 field‐aligned current sheet, J. Geophys. Res., 87, 731, 1982. |
Библиографическая ссылка |
Robinson, R. M., R. R.Vondrak, Measurements of E region ionization and conductivity produced by solar illumination at high latitudes, J. Geophys. Res., 89, 3951, 1984. |
Библиографическая ссылка |
Schlegel, K., Auroral zone E‐region conductivities during solar minimum derived from EISCAT data, Ann. Geophys., 6, 129, 1988. |
Библиографическая ссылка |
Senior, C., Les conductivités ionosphèriques et leur rôle dans la convection magnétosphèrique, Une étude expérimentale et théorique, Diplôme de docteur de 3<sup>e</sup> cycle,Univ. Pierre et Marie Curie,Paris,1980. |
Библиографическая ссылка |
Senior, C., Solar and particle contributions to auroral height‐integrated conductivities from EISCAT data: A statistical study, Ann. Geophys., 9, 449, 1991. |
Библиографическая ссылка |
Smiddy, M., W. J.Burke, M. C.Kelley, N. A.Saflekos, M. S.Gussenhoven, D. A.Hardy, F. J.Rich, Effects of high‐latitude conductivity on observed convection electric fields and Birkeland currents, J. Geophys. Res., 85, 6811, 1980. |
Библиографическая ссылка |
Sugiura, M., A fundamental magnetosphere‐ionosphere coupling mode involving field‐aligned currents as deduced from DE‐2 observations, Geophys. Res. Lett., 11, 877, 1984. |
Библиографическая ссылка |
Sugiura, M., N. C.Maynard, W. H.Farthing, J. P.Heppner, B. G.Ledley, L. J.CahillJr., Initial results on the correlation between the magnetic and electric fields observed from the DE‐2 satellite in the field‐aligned current regions, Geophys. Res. Lett., 9, 985, 1982. |
Библиографическая ссылка |
Sugiura, M., T.Iyemori, R. A.Hoffman, N. C.Maynard, Relationships between field‐aligned currents, electric fields, and particle precipitation as observed by Dynamics Explorer‐2, Magnetospheric Currents, Geophys. Monogr. Ser., 28T. A.Potemra, 96, AGU, Washington, D.C., 1983. |
Библиографическая ссылка |
Vickrey, J. F., R. R.Vondrak, S. J.Mathews, The diurnal and latitudinal variation of auroral zone ionospheric conductivities, J. Geophys. Res., 86, 65, 1981. |
Библиографическая ссылка |
Vickrey, J. F., R. C.Livingston, N. B.Walker, T. A.Potemra, R. A.Heelis, M. C.Kelley, F. J.Rich, On the current‐voltage relationship of the magnetospheric generator at intermediate spatial scales, Geophys. Res. Lett., 13, 495, 1986. |
Библиографическая ссылка |
Weimer, D. R., C. K.Goertz, D. A.Gurnett, N. C.Maynard, J. L.Burch, Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions, J. Geophys. Res., 90, 7479, 1985. |
Библиографическая ссылка |
Weimer, D. R., D. A.Gurnett, C. K.Goertz, J. D.Menietti, J. L.Burch, M.Sugiura, The current‐voltage relationship in auroral current sheets, J. Geophys. Res., 92, 187, 1987. |
Библиографическая ссылка |
Woolf, H. M., On the computation of solar elevation angles and the determination of sunrise and sunset timesRep. 1968‐13 X‐1646NASA Langley Res. Cent., Hampton, Va., 1968. |