Автор |
Watanabe, Tomohiko |
Автор |
Oya, Hiroshi |
Автор |
Watanabe, Kunihiko |
Автор |
Sato, Tetsuya |
Дата выпуска |
1993 |
dc.description |
Extensive three‐dimensional computer simulations of the magnetosphere‐ionosphere (M‐I) coupling are performed to study self‐excitation of an auroral arclike structure with special emphasis on (1) nonlinear evolution of the feedback instability in the M‐I coupling system, (2) controlling mechanisms of the arc structure, (3) formation of a field‐aligned electric potential structure in association with the development of the feedback instability, and (4) effects of the parallel potential generation on the development of the arclike structure. The present study takes the first step toward the theoretical understanding of the M‐I coupling system with parallel potentials. As was already shown by Sato [1978] and Watanabe and Sato [1988], it is reconfirmed that the feedback instability produces a longitudinally elongated, latitudinally striated structure where the upward field‐aligned current and the ionospheric density are locally enhanced. On top of this the present extended study reveals the following important new features: The global distribution of the striation structure is primarily governed by the magnetospheric convection pattern and the ionospheric density distribution. There appears a significant dawn‐dusk asymmetry in the arc formation, even though the apparent geometrical relationship is symmetric. This dawn‐dusk asymmetry reflects the geometrical fact that the ionospheric Pedersen current closing the magnetospheric current is antisymmetric with respect to the noon‐midnight plane, while the self‐closed Hall current is symmetric. The recombination effect plays a significant role in the global, as well as local, development of the arc structure. The nonlinearity of recombination, in conjunction with the closure of an arc‐associated local field‐aligned current system, acts to destroy an old arc and creates a new arc in a different but adjacent position. This results in a peculiar dynamic evolution of the arclike structure. A V‐shaped field‐aligned potential structure is created in association with an arc structure, when we introduce the parallel anomalous resistivity. The nonlinear phase mismatching due to the parallel resistivity reduces the growth rate of the feedback instability, and suppresses the growth of the arc structure. When the effect of precipitating hot electrons is taken into account, the ionospheric density is considerably enhanced locally at the foot of the field lines where the field‐aligned potential is generated. An oscillatory behavior is observed in the development of the ionospheric density, field‐aligned current and potential. The period seems to be governed by the Alfvén bounce time and the ionospheric density. |
Формат |
application.pdf |
Копирайт |
Copyright 1993 by the American Geophysical Union. |
Тема |
IONOSPHERE |
Тема |
Ionosphere/magnetosphere interactions |
Тема |
Ionosphere/magnetosphere interactions |
Тема |
Auroral ionosphere |
Тема |
MAGNETOSPHERIC PHYSICS |
Тема |
Magnetosphere/ionosphere interactions |
Тема |
Auroral phenomena |
Тема |
Magnetosphere/ionosphere interactions |
Название |
Comprehensive simulation study on local and global development of auroral arcs and field‐aligned potentials |
Тип |
article |
DOI |
10.1029/93JA01769 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Space Physics |
Том |
98 |
Первая страница |
21391 |
Последняя страница |
21407 |
Выпуск |
A12 |
Библиографическая ссылка |
Ahn, B.‐H., H. W.Kroehl, Y.Kamide, D. J.Gorney, Estimation of ionospheric electrodynamic parameters using ionospheric conductance deduced from bremsstrahlung X ray image data, J. Geophys. Res., 94, 2565–2586, 1989. |
Библиографическая ссылка |
Atkinson, G., Auroral arcs: Result of the interaction of a dynamic magnetosphere with the ionosphere, J. Geophys. Res., 75, 4746–4755, 1970. |
Библиографическая ссылка |
Banks, P. M., C. R.Chappell, A. F.Nagy, A new model for the interaction of auroral electrons with the atmosphere: Spectral degradation, backscatter, optical emission, and ionization, J. Geophys. Res., 79, 1459–1470, 1974. |
Библиографическая ссылка |
Calvert, W., The auroral plasma cavity, Geophys. Res. Lett., 8, 919–921, 1981. |
Библиографическая ссылка |
CasserlyJr., R. T., P. A.Cloutier, Rocket‐based magnetic observations of auroral Birkeland currents in association with a structured auroral arc, J. Geophys. Res., 80, 2165–2168, 1975. |
Библиографическая ссылка |
Cloutier, P. A., B. R.Sandel, H. R.Anderson, P. M.Pazich, R. J.Spiger, Measurement of auroral Birkeland currents and energetic particle fluxes, J. Geophys. Res., 78, 640–647, 1973. |
Библиографическая ссылка |
Fridman, M., J.Lemaire, Relationship between auroral electrons fluxes and field‐aligned electric potential difference, J. Geophys. Res., 85, 664–670, 1980. |
Библиографическая ссылка |
Goertz, C. K., R. W.Boswell, Magnetosphere‐ionosphere coupling, J. Geophys. Res., 84, 7239–7246, 1979. |
Библиографическая ссылка |
Hasegawa, A., T.Sato, Generation of field‐aligned current during substorm, Dynamics of the MagnetosphereS.‐I.Akasofu, 529–542, D. Reidel, Norwell, Mass., 1980. |
Библиографическая ссылка |
Ichimaru, S., Basic Principles of Plasma Physics, Benjamin, New York, 1973. |
Библиографическая ссылка |
Inhester, B., W.Baumjohann, R. A.Greenwald, E.Nielsen, Joint two‐dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents, 3, Auroral zone currents during the passage of a westward traveling surge, J. Geophys., 49, 155–162, 1981. |
Библиографическая ссылка |
Iversen, I. B., et al., Simultaneous observations of a pulsation event from the ground, with balloons and with a geostationary satellite on August 12, 1978, J. Geophys. Res., 89, 6775–6785, 1984. |
Библиографическая ссылка |
Kamide, Y., Y.Ishihara, T. L.Killeen, J. D.Craven, L. A.Frank, R. A.Heelis, Combining electric field and aurora observations from DE 1 and 2 with ground magnetometer records to estimate ionospheric electromagnetic quantities, J. Geophys. Res., 94, 6723–6738, 1989. |
Библиографическая ссылка |
Lotko, W., B. U. Ö.Sonnerup, R. L.Lysak, Nonsteady boundary layer flow including ionospheric drag and parallel electric fields, J. Geophys. Res., 92, 8635–8648, 1987. |
Библиографическая ссылка |
Lyons, L. R., D. S.Evans, R.Lundin, An observed relation between magnetic field‐aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms, J. Geophys. Res., 84, 457–461, 1979. |
Библиографическая ссылка |
Lysak, R. L., Auroral electrodynamics with current and voltage generators, J. Geophys. Res., 90, 4178–4190, 1985. |
Библиографическая ссылка |
Lysak, R. L., Coupling of the dynamic ionosphere to auroral flux tubes, J. Geophys. Res., 91, 7047–7056, 1986. |
Библиографическая ссылка |
Lysak, R. L., Theory of auroral zone PiB pulsation spectra, J. Geophys. Res., 93, 5942–5946, 1988. |
Библиографическая ссылка |
Lysak, R. L., Feedback instability of the ionospheric resonant cavity, J. Geophys. Res., 96, 1553–1568, 1991. |
Библиографическая ссылка |
Lysak, R. L., C. T.Dum, Dynamics of magnetosphere‐ionosphere coupling including turbulent transport, J. Geophys. Res., 88, 365–380, 1983. |
Библиографическая ссылка |
Miura, A., T.Sato, Numerical simulation of global formation of auroral arcs, J. Geophys. Res., 85, 73–91, 1980. |
Библиографическая ссылка |
Ogawa, T., T.Sato, New mechanism of auroral arcs, Planet. Space Sci., 19, 1393–1412, 1971. |
Библиографическая ссылка |
Park, R. J., P. A.Cloutier, Rocket‐based measurement of Birkeland currents related to an auroral arc and electrojet, J. Geophys. Res., 76, 7714–7733, 1971. |
Библиографическая ссылка |
Rothwell, P. L., M. B.Silevitch, L. P.Block, A model for the propagation of the westward traveling surge, J. Geophys. Res., 89, 8941–8948, 1984. |
Библиографическая ссылка |
Sagdeev, R. Z., A.Galeev, Nonlinear Plasma Theory, Benjamin, New York, 1969. |
Библиографическая ссылка |
Sato, T., Possible sources of field‐aligned currents, Rep. Ionos. Space Res. Jpn., 28, 179–186, 1974. |
Библиографическая ссылка |
Sato, T., Field‐aligned currents and polar cap electric fields, J. Geophys. Res., 81, 263–264, 1976. |
Библиографическая ссылка |
Sato, T., A theory of quiet auroral arcs, J. Geophys. Res., 83, 1042–1048, 1978. |
Библиографическая ссылка |
Sato, T., T. E.Holzer, Quiet auroral arcs and electrodynamic coupling between the ionosphere and the magnetosphere, 1, J. Geophys. Res., 78, 7314–7329, 1973. |
Библиографическая ссылка |
Sato, T., T.Iijima, Primary sources of large‐scale Birkeland currents, Space Sci. Rev., 24, 347–366, 1979. |
Библиографическая ссылка |
Sato, T., H.Okuda, Ion‐acoustic double layers, Phys. Rev. Lett., 44, 740–743, 1980. |
Библиографическая ссылка |
Sesiano, J., P. A.Cloutier, Measurements of field‐aligned currents in a multiple auroral arc system, J. Geophys. Res., 81, 116–122, 1976. |
Библиографическая ссылка |
Seyler, C. E., Nonlinear 3‐D evolution of bounded kinetic Alfvén waves due to shear flow and collisionless tearing instability, Geophys. Res. Lett., 15, 756–759, 1988. |
Библиографическая ссылка |
Seyler, C. E., A mathematical model of the structure and evolution of small‐scale discrete auroral arcs, J. Geophys. Res., 95, 17199–17215, 1990. |
Библиографическая ссылка |
Watanabe, K., T.Sato, Self‐excitation of auroral arcs in a three‐dimensionally coupled magnetosphere‐ionosphere system, Geophys. Res. Lett., 15, 717–720, 1988. |
Библиографическая ссылка |
Watanabe, K., T.Sato, Global simulation of the solar wind‐magnetosphere interaction: The importance of its numerical validity, J. Geophys. Res., 95, 75–88, 1990. |
Библиографическая ссылка |
Watanabe, K., M.Ashour‐Abdalla, T.Sato, A numerical model of the magnetosphere‐ionosphere coupling: Preliminary results, J. Geophys. Res., 91, 6973–6978, 1986. |