Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Volland, H.
Автор Grellmann, L.
Дата выпуска 1978
dc.description Conventional dynamo theories start from wind fields which are considered as external forces independent of the ionospheric plasma. These dynamos are called kinematic dynamos. Coupling between the neutral wind and the ionospheric plasma in a self‐consistent manner results in a hydromagnetic dynamo. In this paper a theory of a hydromagnetic dynamo of the geomagnetic Sq current is developed assuming a thin shell model with constant elements of the electric conductivity tensor. Coupling between neutral gas and plasma is described by the Ampere force j × B<sub>o</sub> (j being electric current density and B<sub>o</sub> geomagnetic field) which depends not only on the velocity difference between neutrals and plasma (ion drag) but also on the electric polarization field. The electric polarization field includes a source free component which is not negligibly small at dynamo layer heights, so that the electric field cannot be represented by an electric potential. This theory leads to a modified Laplace equation of tidal theory which can be solved numerically. Calculations are presented for the diurnal and the semidiurnal tidal wave modes. Their equivallent depths, their vertical wavelengths, and their attenuation factors are discussed as functions of a plasma parameter δ which is proportional to a Cowling conductivity. The horizontal structures of pressure and electric current of the dominant symmetric tidal waves are determined for different values of δ representing the lower atmosphere (δ = 0), the dynamo region (δ ≃ 1), and F layer heights (δ ≃ 10). It is shown that waves with positive equivalent depths at δ = 0 are heavily attenuated at δ > 1 and drastically change their horizontal structure there. On the other hand, waves with negative equivalent depths at δ = 0 are only weakly affected by the Ampere force. From our calculations we suggest that tidal wave theory at thermospheric heights should be reconsidered taking into account electric coupling between the modes. In particular, we predict that the semidiurnal (2, 2) wave so far considered as the dominant semidiurnal mode above about 200 km height may have lost its significance and may in fact be replaced by the symmetric (2, ‐3) wave.
Формат application.pdf
Копирайт Copyright 1978 by the American Geophysical Union.
Тема GEOMAGNETISM AND PALEOMAGNETISM
Тема Dynamo: theories and simulations
Название A hydromagnetic dynamo of the atmosphere
Тип article
DOI 10.1029/JA083iA08p03699
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Space Physics
Том 83
Первая страница 3699
Последняя страница 3708
Выпуск A8
Библиографическая ссылка Acheson, D. J., R.Hide, Hydromagnetics of rotating fluids, Rep. Progr. Phys., 36, 159–221, 1973.
Библиографическая ссылка Chapman, S., J.Bartels, Geomagnetism, Clarendon, Oxford, 1951.
Библиографическая ссылка Forbes, J. M., R. S.Lindzen, Atmospheric solar tides and their electrodynamic effects, I, J. Atmos. Terr. Phys., 38, 897–910, 1976.
Библиографическая ссылка Geisler, J. E. A., A numerical study of the wind systems in the middle thermosphere, J. Atmos. Terr. Phys., 29, 1469–1482, 1967.
Библиографическая ссылка Harper, R. M., A comparison of ionospheric currents, magnetic variations, and electric fields at Arecibo, J Geophys Res., 82, 3233–3242, 1977.
Библиографическая ссылка Hong, S‐S., R. S.Lindzen, Solar semidiurnal tide in the thermosphere, J. Atmos. Sci., 33, 135–153, 1976.
Библиографическая ссылка Jones, M. N., Atmospheric oscillations, 2, Planet. Space Sci., 19, 609–634, 1971.
Библиографическая ссылка Kato, S., S.Matsushita, A consideration of the tidal wave transmission through the ionized atmosphere, J. Geomagn. Geoelec., 21, 471–478, 1969.
Библиографическая ссылка Kohl, H., J. W.King, Atmospheric winds between 100 km and 700 km and their effects on the ionosphere, J. Atmos. Terr .Phys., 29, 1045–1067, 1967.
Библиографическая ссылка Lindzen, R. S., A model decomposition of the semidiurnal tide in the lower thermosphere, J. Geophys. Res., 81, 2923–2926, 1976.
Библиографическая ссылка Longuet‐Higgins, M. S., The eigenfunctions of Laplace's tidal equations over a sphere, Phil. Trans. Roy. Soc. London, 262Ser. A, 511–607, 1968.
Библиографическая ссылка Maeda, K., H.Matsumoto, Conductivity of the ionosphere and current system, Rep. Ionos. Space Res. Jap., 16, 1‐26, 1962, Richmond, A. D., S. Matsushita, and J. D. Tarpley On the production mechanism of electric currents and fields in the ionosphere, J. Geophys. Res., 81, 547–555, 1976.
Библиографическая ссылка Rishbeth, H., Polarization fields produced by winds in the equatorial F‐region, Planet. Space Sci., 19, 357‐369, 1971, Taffe, W. J., Hydromagnetic effects on atmospheric tides, J. Geophys. Res., 74, 5775–5791, 1969.
Библиографическая ссылка Tarpley, J. D., The ionospheric wind dynamo, 2, Solar tides, Planet. Space Sci., 18, 1091–1103, 1970.
Библиографическая ссылка Stening, R. J., An assessment of the contributions of various winds to the Sq‐current, Planet. Space Sci., 17, 889–908, 1969.
Библиографическая ссылка Volland, H., Coupling between the neutral tidal wind and the ionospheric dynamo current, J. Geophys. Res., 81, 1621–1628, 1976a.
Библиографическая ссылка Volland, H., The atmospheric dynamo, J. Atmos. Terr. Phys., 38, 869–877, 1976b.
Библиографическая ссылка Volland, H., H. G.Mayr, Theoretical aspects of tidal and planetary wave propagation at thermospheric heights, Rev. Geophys. Space Phys., 15, 203–226, 1977.

Скрыть метаданые