Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Burns, A. G.
Автор Killeen, T. L.
Автор Roble, R. G.
Дата выпуска 1989
dc.description A diagnostic postprocessor analysis package used with runs of the National Center for Atmospheric Research thermospheric general circulation model (NCAR‐TGCM) has been extended to include the terms of the neutral composition equation that is solved by this model. The purpose of the development of this capability is to quantify the relative importance of the various physical and chemical mechanisms that force changes in neutral thermospheric composition for given geophysical situations. Such mechanisms include photodissociation of molecular oxygen and three‐body recombination of atomic oxygen, molecular and eddy diffusion and vertical and horizontal wind advection. Compositional term analysis calculations are presented using a diurnally‐reproducible TGCM run for a day of moderate geomagnetic activity (K<sub>p</sub> = 3) near December solstice. Principal results for F region altitudes are in general agreement with previous work and include the following: (1) upper thermospheric composition is controlled by three major processes of vertical advection, horizontal advection and molecular diffusion; (2) the time scale for changes of 1/e in the mass mixing ratio for N<sub>2</sub> and O resulting from these processes is typically ∼25–30 hours; (3) large gradients exist in the mass mixing ratios for N<sub>2</sub> and O in the summer hemisphere high‐latitude region that, when combined with horizontal winds blowing across the magnetic pole, led to significant composition changes due to horizontal mass advection; (4) vertical advection is the major cause of the changes in mass mixing ratio of N<sub>2</sub> and O at low and middle latitudes, with cooling and subsidence leading to decreases (increases) in the mixing ratios of N<sub>2</sub> (O) at night, and heating and expansion leading to increase (decreases) during the daytime; (5) upward winds caused by Joule heating in the morning and evening sectors of the auroral oval cause large increases in the mixing ratio of N<sub>2</sub> in these regions due to vertical mass advection. The principal results at ∼120 km altitude include the following: (1) photodissociation is an important term for O and O<sub>2</sub> in this altitude region, becoming roughly commensurate with molecular diffusion, vertical and horizontal advection; (2) significant increases in the mass mixing ratio of O in the summer hemisphere occur due to photodissociation, especially in the daytime at middle latitudes; (3) downward molecular diffusion of O is important in controlling the mass mixing ratio for O, particularly in the high‐latitude winter hemisphere; (4) a complicated morphological pattern of horizontal and vertical advection maintains the mass mixing ratios at these altitudes; (5) vertical advection resulting from Joule heating in the morning and evening sectors of the auroral zone is of importance for the composition of the high‐latitude lower thermosphere; (6) typical time scales for maximum changes of 1/e in the mass mixing ratio of N<sub>2</sub> are of the order of 60–90 hours.
Формат application.pdf
Копирайт Copyright 1989 by the American Geophysical Union.
Тема ATMOSPHERIC COMPOSITION AND STRUCTURE
Тема Thermosphere: composition and chemistry
Тема Ion chemistry of the atmosphere
Тема IONOSPHERE
Тема Ionosphere/atmosphere interactions
Тема ATMOSPHERIC PROCESSES
Тема Meteorology and Atmospheric Dynamics: Thermospheric dynamics
Название Processes responsible for the compositional structure of the thermosphere
Тип article
DOI 10.1029/JA094iA04p03670
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Space Physics
Том 94
Первая страница 3670
Последняя страница 3686
Выпуск A4
Библиографическая ссылка Campbell, I. M., C. N.Gray, Rate constants for O(<sup>3</sup>P) recombination and association with N(<sup>4</sup>S), Chem. Phys. Lett., 18, 607–609, 1973.
Библиографическая ссылка Chiu, Y. T., An improved phenomenological model of ionospheric density, J. Atmos. Terr. Phys., 37, 1563–1570, 1975.
Библиографическая ссылка Colegrove, F. D., Atmospheric composition in the lower thermosphere, J. Geophys. Res., 71, 2227–2236, 1966.
Библиографическая ссылка Colegrove, F. D., W. B.Hanson, F. S.Johnson, Eddy diffusion and oxygen transport in the lower thermosphere, J. Geophys. Res., 70, 4931–4941, 1965.
Библиографическая ссылка Dickinson, R. E., E. C.Ridley, R. G.Roble, A three‐dimensional general circulation model of the thermosphere, J. Geophys. Res., 86, 1499–1512, 1981.
Библиографическая ссылка Dickinson, R. E., E. C.Ridley, R. G.Roble, Thermospheric general circulation with coupled dynamics and composition, J. Atmos. Sci., 41, 205–219, 1984.
Библиографическая ссылка Engebretson, M. J., K.Mauersberger, D. C.Kayser, W. E.Potter, A. O.Nier, Empirical model of atomic nitrogen in the upper thermosphere, J. Geophys. Res., 82, 461–471, 1977.
Библиографическая ссылка Feldstein, Y. I., Yu. I.Galperin, The auroral luminosity structure in the high‐latitude upper atmosphere: Its dynamics and relationship to the large‐scale structure of the Earth's magnetosphere, Rev. Geophys., 23, 217–276, 1985.
Библиографическая ссылка Fesen, C. G., R. E.Dickinson, R. G.Roble, Simulations of thermospheric tides at equinox with the NCAR thermospheric general circulation model, J. Geophys. Res., 91, 4471–4489, 1986.
Библиографическая ссылка Forbes, J. M., H. B.Garrett, Seasonal‐latitudinal structure of the diurnal thermospheric tide, J. Atmos. Sci., 35, 148–159, 1978.
Библиографическая ссылка Forbes, J. M., R. G.Roble, F. A.Marcos, Thermospheric dynamics during the March 22, 1979, magnetic storm, 2, Comparisons of model predictions with observations, J. Geophys. Res., 92, 6069–6081, 1987.
Библиографическая ссылка Fuller‐Rowell, T. J., D.Rees, A three‐dimensional time‐dependent global model of the thermosphere, J. Atmos. Sci., 37, 2545–2567, 1980.
Библиографическая ссылка Fuller‐Rowell, T. J., D.Rees, A three‐dimensional time dependent simulation of the global dynamical response of the thermosphere to a geomagnetic substorm, J. Atmos. Terr. Phys., 43, 701–721, 1981.
Библиографическая ссылка Fuller‐Rowell, T. J., D.Rees, Derivation of a conservation equation for mean molecular weight for a two‐constituent gas within a three‐dimensional, time‐dependent model of the thermosphere, Planet. Space Sci., 31, 1209–1222, 1983.
Библиографическая ссылка Hays, P. B., R. A.Jones, M. H.Rees, Auroral heating and the composition of the neutral atmosphere, Planet. Space Sci., 21, 559–573, 1973.
Библиографическая ссылка Hays, P. B., T. L.Killeen, N. W.Spencer, L. E.Wharton, R. G.Roble, B. E.Emery, T. J.Fuller‐Rowell, D.Rees, L. A.Frank, J. D.Craven, Observations of the dynamics of the polar thermosphere, J. Geophys. Res., 89, 5597–5612, 1984.
Библиографическая ссылка Hedin, A. E., MSIS‐86 thermospheric model, J. Geophys. Res., 92, 4649–4662, 1987.
Библиографическая ссылка Hedin, A. E., G. R.Carignan, Morphology of thermospheric composition variations in the quiet polar mesosphere from Dynamics Explorer measurements, J. Geophys. Res., 90, 5269–5277, 1985.
Библиографическая ссылка Hedin, A. E., H. G.Mayr, C. A.Reber, N. W.Spencer, Empirical model of global thermospheric temperature and composition based on data from the OGO 6 quadrupole mass spectrometer, J. Geophys. Res., 79, 215–225, 1974.
Библиографическая ссылка Hedin, A. E., C. A.Reber, G. P.Newton, N. W.Spencer, H. C.Brinton, H. G.Mayr, A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS, 2, Composition, J. Geophys. Res., 82, 2148–2156, 1977.
Библиографическая ссылка Heelis, R. A., J. K.Lowell, R. W.Spiro, A model of the highlatitude ionospheric convection pattern, J. Geophys. Res., 87, 6339–6345, 1982.
Библиографическая ссылка Hernandez, G., R. G.Roble, The geomagnetic quiet nighttime thermospheric wind pattern over Fritz Peak Observatory during solar cycle minimum and maximum, J. Geophys. Res., 89, 327–337, 1984.
Библиографическая ссылка Hinteregger, H. E., Representation of solar EUV fluxes for aeronomical applications, Adv. Space Res., 1, 39–52, 1981.
Библиографическая ссылка Hoffman, R. A., G. D.Hogan, R. C.Maehl, Dynamics Explorer spacecraft and ground operations system, Space Sci. Instrum., 5, 349–367, 1981.
Библиографическая ссылка Jacchia, L. G., Variations in thermospheric composition: A model based on mass spectrometer and satellite drag data, J. Geophys. Res., 79, 1923–1927, 1974.
Библиографическая ссылка Johnson, F. S., Composition changes in the upper atmosphere, Electron Density Distribution in Ionosphere and ExosphereE.Thrane, 81, North‐Holland, Amsterdam, 1964.
Библиографическая ссылка Johnson, F. S., B.Gottleib, Eddy mixing and circulation at ionospheric levels, Planet. Space Sci., 18, 1707–1718, 1970.
Библиографическая ссылка Johnson, F. S., B.Gottleib, Atomic oxygen transport in the thermosphere, Planet. Space Sci., 21, 1001–1009, 1973.
Библиографическая ссылка Johnston, H. S., Gas phase reaction kinetics of neutral oxygen speciesRep. NBS‐NSRSDS‐20U. S. Government Printing Office, Washington, D. C., 1968.
Библиографическая ссылка Kasprzak, W. T., G. P.Newton, Comparison of San Marco 3 Nace neutral composition data with the extrapolated OGO 6 empirical model, J. Geophys. Res., 81, 1404–1406, 1976a.
Библиографическая ссылка Kasprzak, W. T., G. P.Newton, Comparisons of theoretical and measured and theoretical thermospheric daily composition variations, J. Geophys. Res., 81, 2405–2409, 1976b.
Библиографическая ссылка Kayser, D. C., W. E.Potter, Molecular oxygen measurements at 200 km from AE‐D near winter solstice, 1975, Geophys. Res. Lett., 3, 455–458, 1976.
Библиографическая ссылка Killeen, T. L., R. G.Roble, An analysis of the high‐latitude thermospheric wind pattern calculated by a thermospheric general circulation model, 1, J. Geophys. Res., 89, 7509–7522, 1984.
Библиографическая ссылка Killeen, T. L., R. G.Roble, An analysis of the high‐latitude thermospheric wind pattern calculated by a thermospheric general circulation model, 2, Neutral parcel transport, J. Geophys. Res., 91, 11291–11307, 1986.
Библиографическая ссылка Killeen, T. L., R. G.Roble, Thermosphere dynamics driven by magnetospheric sources: Contributions from the first five years of the Dynamics Explorer program, Rev. Geophys., 26, 329, 1988.
Библиографическая ссылка Killeen, T. L., R. G.Roble, R. W.Smith, N. W.Spencer, J. W.MeriwetherJr., D.Rees, G.Hernandez, P. B.Hays, L. L.Cogger, D. P.Sipler, M. A.Biondi, C. A.Tepley, Mean neutral circulation in the winter polar F region, J. Geophys. Res., 91, 1633–1649, 1986.
Библиографическая ссылка King, G. A. M., The dissociation of oxygen and high level circulation in the atmosphere, J. Atmos. Sci., 21, 231–237, 1964.
Библиографическая ссылка Mauersberger, K., W. E.Potter, D. C.Kayser, A direct measurement of the winter He bulge, Geophys. Res. Lett., 3, 269–271, 1976a.
Библиографическая ссылка Mauersberger, K., D. C.Kayser, W. E.Potter, A. O.Nier, Seasonal variation of neutral thermospheric constitutents in the northern hemisphere, J. Geophys. Res., 81, 7–11, 1976b.
Библиографическая ссылка Mauersberger, K., M. J.Engebretson, D. C.Kayser, W. E.Potter, Diurnal variation of atomic nitrogen, J. Geophys. Res., 81, 2413–2416, 1976c.
Библиографическая ссылка Mayr, H. G., I.Harris, Diurnal variations in the thermosphere, 2, Temperature, composition and winds, J. Geophys. Res., 82, 2628–2640, 1977a.
Библиографическая ссылка Mayr, H. G., I.Harris, Annual variation in temperature and composition of the thermosphere and upper mesosphere, Space Res., 17, 293–299, 1977b.
Библиографическая ссылка Mayr, H. G., H.Voll, Semiannual variations in the neutral composition, Ann. Geophys., 27, 513, 1971.
Библиографическая ссылка Mayr, H. G., H.Voll, Diffusion model for the phase delay between thermospheric density and temperature, J. Geophys. Res., 77, 2359–2367, 1972a.
Библиографическая ссылка Mayr, H. G., H.Voll, Theoretical model for the latitude dependence of the thermospheric annual and semiannual variations, J. Geophys. Res., 77, 6774–6790, 1972b.
Библиографическая ссылка Mayr, H. G., H.Voll, A two component model of the diurnal variations in thermospheric composition, J. Atmos. Terr. Phys., 35, 669–680, 1973.
Библиографическая ссылка Mayr, H. G., A. E.Hedin, C. A.Reber, G. R.Carignan, Global characteristics in the diurnal variations of the thermospheric temperature and composition, J. Geophys. Res., 79, 619–728, 1974.
Библиографическая ссылка Mayr, H. G., I.Harris, N. W.Spencer, Some properties of upper atmosphere dynamics, Rev. Geophys., 16, 539–565, 1978.
Библиографическая ссылка McCormac, F. G., T. L.Killeen, A. G.Burns, J. W.Meriwether, R. G.Roble, L. E.Wharton, N. W.Spencer, Polar cap diurnal temperature variations: Observations and modeling, J. Geophys. Res., 93, 7466, 1988.
Библиографическая ссылка Meriwether, J. W., T. L.Killeen, F. G.McCormac, A. G.Burns, R. G.Roble, Thermospheric winds in the geomagnetic polar cap for solar minimum conditions, J. Geophys. Res., 93, 7478, 1988.
Библиографическая ссылка Newton, G. P., W. T.Kasprzak, D. T.Pelz, Equatorial composition in the 137‐ to 225‐km region from the San Marco 3 mass spectrometer, J. Geophys. Res., 79, 1929–1941, 1974.
Библиографическая ссылка Newton, G. P., W. T.Kasprzak, S. A.Curtis, D. T.Pelz, Local time variation of equatorial thermospheric composition determined by the San Marco 3 Nace, J. Geophys. Res., 80, 2289–2299, 1975.
Библиографическая ссылка Potter, W. E., D. C.Kayser, H. C.Brinton, L. H.Brace, M.Oppenheimer, Comparison of measured and calculated thermospheric molecular oxygen densities, J. Geophys. Res., 82, 5243, 1977.
Библиографическая ссылка Prölss, G. W., Magnetic storm associated perturbation of the upper atmosphere: Recent results obtained by satellite‐borne gas analyzers, Rev. Geophys., 18, 183–202, 1980.
Библиографическая ссылка Prölss, G. W., Latitudinal structure and extension of the polar atmospheric disturbance, J. Geophys. Res., 86, 2385–2396, 1981.
Библиографическая ссылка Prölss, G. W., M.Roemer, Dissipation of solar wind energy in the earth's upper atmosphere: The geomagnetic activity effect, Adv. Space Res., 5, 193–202, 1985.
Библиографическая ссылка Reber, C. A., P. B.Hays, Thermospheric wind effects on the distribution of helium and argon in the Earth's upper atmosphere, J. Geophys. Res., 78, 2977–2991, 1973.
Библиографическая ссылка Rees, D., T. J.Fuller‐Rowell, R. W.Smith, Measurements of high latitude thermospheric winds by rocket and ground‐based techniques and their interpretation using a three‐dimensional, timedependent dynamical model, Planet. Space Sci., 28, 919–932, 1980.
Библиографическая ссылка Rees, D., T. J.Fuller‐Rowell, R.Gordon, T. L.Killeen, P. B.Hays, L. E.Wharton, N. W.Spencer, A comparison of wind observations of the upper thermosphere from the Dynamics Explorer satellite with the predictions of a global time‐dependent model, Planet. Space Sci., 31, 1299–1314, 1983.
Библиографическая ссылка Rees, D., R.Gordon, T. J.Fuller‐Rowell, M.Smith, G. R.Carignan, T. L.Killeen, P. B.Hays, N. W.Spencer, The composition, structure, temperature, and dynamics of the upper thermosphere in the polar regions during October to December, 1981, Planet. Space Sci., 33, 425–456, 1985a.
Библиографическая ссылка Rees, D., T. J.Fuller‐Rowell, M. F.Smith, R.Gordon, T. L.Killeen, P. B.Hays, N. W.Spencer, L. E.Wharton, N. C.Maynard, The westward thermospheric jet‐stream of the evening auroral oval, Planet. Space Sci., 33, 617–666, 1985b.
Библиографическая ссылка Rees, D., T. J.Fuller‐Rowell, R.Gordon, J. P.Heppner, N. C.Maynard, N. W.Spencer, L. E.Wharton, P. B.Hays, T. L.Killeen, A theoretical model and empirical study of the response of the high latitude thermosphere to the sense of the “Y” component of the interplanetary magnetic field, Planet. Space Sci., 34, 1–40, 1986.
Библиографическая ссылка Rees, D., T. J.Fuller‐Rowell, H.Rishbeth, The use of mass spectrometer measurements of derive thermospheric temperature and density, Planet. Space Sci., 36, 281–290, 1988.
Библиографическая ссылка Rishbeth, H., R.Gordon, D.Rees, T. J.Fuller‐Rowell, Modelling of thermospheric composition changes caused by a severe magnetic storm, Planet. Space Sci., 33, 1283–1301, 1985.
Библиографическая ссылка Roble, R. G., E. C.Ridley, An auroral model for the NCAR thermospheric general circulation model (TGCM), Ann. Geophys., 5A, 369–382, 1987.
Библиографическая ссылка Roble, R. G., R. E.Dickinson, E. C.Ridley, Global circulation and temperature structure of thermosphere with high‐latitude plasma convection, J. Geophys. Res., 87, 1599–1614, 1982.
Библиографическая ссылка Roble, R. G., R. E.Dickinson, E. C.Ridley, B. A.Emery, P. B.Hays, T. L.Killeen, N. W.Spencer, The high latitude circulation and temperature structure of the thermosphere near solstice, Planet. Space Sci., 31, 1479–1499, 1983.
Библиографическая ссылка Roble, R. G., B. A.Emery, R. E.Dickinson, E. C.Ridley, T. L.Killeen, P. B.Hays, G. R.Carignan, Thermospheric circulation, temperature, and compositional structure of the southern hemisphere polar cap during October‐November 1981, J. Geophys. Res., 89, 9057–9068, 1984.
Библиографическая ссылка Roble, R. G., B. A.Emery, E. C.Ridley, Ionospheric and thermospheric response over Millstone Hill to the May 30, 1984, annular solar eclipse, J. Geophys. Res., 91, 1661–1670, 1986.
Библиографическая ссылка Roble, R. G., E. C.Ridley, R. E.Dickinson, On the global mean structure of the thermosphere, J. Geophys. Res., 92, 8745–8758, 1987.
Библиографическая ссылка Roble, R. G., T. L.Killeen, N. W.Spencer, R. A.Heelis, P. H.Reiff, J. D.Winningham, Thermospheric dynamics during November 21–22, 1981: Dynamics Explorer measurements and thermospheric general circulation model predictions, J. Geophys. Res., 93, 209–225, 1988.
Библиографическая ссылка Sica, R. J., G. J.Romick, M. H.Rees, G.Hernandez, R. G.Roble, Auroral zone thermospheric dynamics, 1, Averages, J. Geophys. Res., 92, 3231–3244, 1986a.
Библиографическая ссылка Sica, R. J., G.Hernandez, M. H.Rees, R. G.Roble, Auroral zone thermospheric dynamics, 2, Individual nights, J. Geophys. Res., 92, 13593–13611, 1986b.
Библиографическая ссылка Spiro, R. W., P. H.Reiff, L. J.MaherJr., Precipitating electron energy flux and auroral zone conductances: An empirical model, J. Geophys. Res., 87, 8215–8227, 1982.
Библиографическая ссылка Stehle, C. G., J. S.Nisbet, E.Bleuler, A global model of the neutral thermosphere in magnetic coordinates based on AE‐C data, J. Geophys. Res., 88, 945–960, 1983.
Библиографическая ссылка Torr, M. R., D. G.Tort, H. E.Hinteregger, Solar flux variability in the Schumann‐Runge continuum as a function of solar cycle, J. Geophys. Res., 85, 6063–6068, 1980.
Библиографическая ссылка Volland, H., H. G.Mayr, Theoretical aspects of tidal and planetary wave propagation at thermospheric heights, Rev. Geophys., 15, 203–226, 1977.
Библиографическая ссылка Whalen, J. A., A quantitative description of the spatial distribution and dynamics of the energy flux in the continuous aurora, J. Geophys. Res., 88, 7155–7169, 1983.

Скрыть метаданые