Автор |
Keken, Peter E. |
Автор |
Yuen, David A. |
Дата выпуска |
1995 |
dc.description |
Recent experiments on the melting temperatures of perovskite have indicated a high melting temperature in the lower mantle. This suggests that a creep law with an activation enthalpy, that increases strongly with depth, should be employed for the lower mantle rheology. We have examined the dynamical consequences of employing an Arrhenius type of dependence in a Newtonian flow law under the Weertman assumption relating activation enthalpy to the variation of the melting temperature with pressure. We have employed finite element techniques to model both steady state and time‐dependent flows for such type of rheology in an axisymmetric spherical‐ shell model. An outstanding dynamical feature from these models is the presence of a local viscosity maximum with a magnitude of around 10<sup>23</sup>Pa · s for Earthlike surface Nusselt numbers between 10 and 15. This viscosity maximum is found in the middle of the lower mantle and is a site of high deviatoric stresses between 10 and 100 MPa. For the surface Rayleigh numbers examined (10<sup>4</sup> to 10<sup>5</sup>) the flows developed are not strongly time‐dependent and often tend to a steady state. In spite of the presence of internal heating with chondritic strength, a few large, relatively stationary plumes are found in the lower mantle, while the rest of the lower mantle circulation is being driven by the more vigorous upper mantle flow. There are no small‐scale instabilities developed in the D” layer of these models, thus suggesting that any small‐scale lateral heterogeneities existing there may have chemical origins. |
Формат |
application.pdf |
Копирайт |
Copyright 1995 by the American Geophysical Union. |
Тема |
STRUCTURAL GEOLOGY |
Тема |
Rheology: mantle |
Тема |
TECTONOPHYSICS |
Тема |
Tectonophysics: Dynamics, convection currents and mantle plumes |
Тема |
Tectonophysics: Earth's interior—composition and state |
Тема |
Planetary interiors |
Тема |
Rheology: mantle |
Название |
Dynamical influences of high viscosity in the lower mantle induced by the steep melting curve of perovskite: Effects of curvature and time dependence |
Тип |
article |
DOI |
10.1029/95JB00923 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Solid Earth |
Том |
100 |
Первая страница |
15233 |
Последняя страница |
15248 |
Выпуск |
B8 |
Библиографическая ссылка |
Anderson, D. L., A seismic equation of state, II, Shear properties and thermodynamics of the lower mantle, Phys. Earth Planet. Inter., 45, 307–323, 1987. |
Библиографическая ссылка |
Balachandar, S., D. A.Yuen, D. M.Reuteler, Time‐dependent three‐dimensional compressible convection with depth‐dependent properties, Geophys. Res. Lett., 19, 2247–2250, 1992. |
Библиографическая ссылка |
Balachandar, S., D. A.Yuen, D. M.Reuteler, Viscous and adiabatic heating effects in three‐dimensional compressible convection in infinite Prandtl number, Phys. Fluids, A5, 2938–2945, 1993. |
Библиографическая ссылка |
Baumgardner, J. R., Effects of viscosity stratification in three‐dimensional spherical convection, Eos Trans. AGU, 7143, 1625, 1990. |
Библиографическая ссылка |
Bercovici, D., G.Schubert, G. A.Glatzmaier, Three‐dimensional convection of an infinite Prandtl number compressible fluid in a basally heated spherical shell, J. Fluid Mech., 239, 683–719, 1992. |
Библиографическая ссылка |
Blankenbach, B., et al., A benchmark comparison for mantle convection codes, Geophys. J. Int., 98, 23–38, 1989. |
Библиографическая ссылка |
Boehler, R., Temperatures in the Earth's core from meltingpoint measurements of iron at high static pressures, Nature, 363, 534–536, 1993. |
Библиографическая ссылка |
Boehler, R., A.Zerr, Reply to: “Comment on ‘Melting of MgSiO<sub>3</sub>‐perovskite to 625 kilobars’ by A. Zerr and R. Boehler”, by D.L. Heinz et al., Science, 264, 280, 1994. |
Библиографическая ссылка |
Brenan, K. E., S. L.Campbell, L. R.Petzold, Numerical Solution of Initial‐Value Problems in Differential‐Algebraic Equations, 210, North‐Holland, New York, 1989. |
Библиографическая ссылка |
Brown, J. M., Interpretation of the D“ zone at the base of the mantle: dependence on assumed values of thermal conductivity, Geophys. Res. Lett., 13, 1509–1512, 1986. |
Библиографическая ссылка |
Campbell, I. H., R. W.Griffiths, Implications of mantle plume structure for the evolution of flood basalts, Earth Planet. Sci. Lett., 99, 79–93, 1990. |
Библиографическая ссылка |
Christensen, U. R., Convection with pressure‐ and temperature‐dependent non‐Newtonian rheology, Geophys. J. R. Astron. Soc., 77, 343–384, 1984. |
Библиографическая ссылка |
Chopelas, A., R.Boehler, Thermal expansion measurements at very high pressures, systematics and a case for a chemically homogeneous mantle, Geophys. Res. Lett., 16, 1347–1350, 1989. |
Библиографическая ссылка |
Corrieu, V., Y.Ricard, C.Froidevaux, Converting mantle tomography into mass anomalies to predict the Earth's radial viscosity, Phys. Earth Planet. Inter., 84, 3–13, 1994. |
Библиографическая ссылка |
Cuvelier, C., A.Segal, A. A.vanSteenhoven, Finite Element Methods and the Navier‐Stokes Equations, D. Reidel, Norwell, Mass., 1986. |
Библиографическая ссылка |
Davies, G., M.Gurnis, Interaction of mantle dregs with convection: lateral heterogeneity at the core‐mantle boundary, Geophys. Res. Lett., 13, 1517–1520, 1986. |
Библиографическая ссылка |
Davies, J. H., O.Gudmundsson, R. W.Clayton, Spectra of mantle shear wave velocity structure, Geophys. J. Int., 108, 865–882, 1992. |
Библиографическая ссылка |
Dupré, B., C. J.Allegre, Pb‐Sr isotope variation in Indian Ocean basalts and mixing phenomena, Nature, 303, 142–146, 1983. |
Библиографическая ссылка |
Frost, H. J., M. F.Ashby, Deformation‐mechanism maps: the plasticity and creep of metals and ceramics, Pergamon, Tarrytown, N. Y., 1982. |
Библиографическая ссылка |
Gallagher, K. G., T. J.Ahrens, Shock‐induced melting of olivine (high‐pressure phase(s)) and its geophysical implications, Eos Trans. AGU, 75, 653, 1994. |
Библиографическая ссылка |
Hansen, U., A.Ebel, Time‐dependent thermal convection — a possible explanation for multiscale flow in the Earth's mantle, Geophys. J., 94, 181–191, 1988. |
Библиографическая ссылка |
Hansen, U., D. A.Yuen, Numerical simulations of thermal‐chemical instabilities and lateral heterogeneities at the core‐mantle boundary, Nature, 334, 237–240, 1988. |
Библиографическая ссылка |
Hansen, U., D. A.Yuen, Dynamical influences from thermal‐chemical instabilities at the core‐mantle boundary, Geophys. Res. Lett., 16, 629–632, 1989. |
Библиографическая ссылка |
Hansen, U., D. A.Yuen, S. E.Kroening, Transition to hard turbulence in thermal convection at infinite Prandtl number, Phys. Fluids, A2, 2157–2163, 1990. |
Библиографическая ссылка |
Hansen, U., D. A.Yuen, S. E.Kroening, Effects of depth‐dependent thermal expansivity on mantle circulations and lateral thermal anomalies, Geophys. Res. Lett., 18, 1261–1264, 1991. |
Библиографическая ссылка |
Hansen, U., D. A.Yuen, S. E.Kroening, T. B.Larsen, Dynamical consequences of depth‐dependent thermal expansivity and viscosity on mantle circulations and thermal structure, Phys. Earth Planet. Inter., 7, 205–223, 1993. |
Библиографическая ссылка |
Hart, S. R., A large‐scale isotope anomaly in the Southern Hemisphere mantle, Nature, 309, 753–757, 1984. |
Библиографическая ссылка |
Heinz, D. L., E.Knittle, J. S.Sweeney, Q.Williams, R.Jeanloz, Comment on “Melting of MgSiO3‐perovskite to 625 kilobars”, by A. Zerr and R. Boehler, Science, 264, 279, 1994. |
Библиографическая ссылка |
Hooper, P. R., The timing of crustal extension and the eruption of continental flood basalts, Nature, 345, 246–249, 1990. |
Библиографическая ссылка |
Ivins, E. R., C. G.Sammis, C. F.Yoder, Deep mantle viscosity structure with prior estimate and satellite constraint, J. Geophys. Res., 98, 4579–4609, 1993. |
Библиографическая ссылка |
Knittle, E., R.Jeanloz, The high‐pressure phase diagram of Fe<sub>0.94</sub>O: a possible constituent of the Earth's core, J. Geophys. Res., 96, 16169–16180, 1991a. |
Библиографическая ссылка |
Knittle, E., R.Jeanloz, Earth's core‐mantle boundary: results of experiments at high pressures and temperatures, Science, 251, 1438–1443, 1991b. |
Библиографическая ссылка |
Lay, T., Structure of the core‐mantle transition zone: A chemical and thermal boundary layer, Eos Trans. AGU, 704, 49–59, 1989. |
Библиографическая ссылка |
Leitch, A. M., D. A.Yuen, Internal heating and thermal constraints on the mantle, Geophys. Res. Lett., 16, 1407–1410, 1989. |
Библиографическая ссылка |
Leitch, A. M., D. A.Yuen, C. L.Lausten, Free and rigid lids and variable properties in mantle convection: end members for Venus, J. Geophys. Res., 97, 20819–20923, 1992. |
Библиографическая ссылка |
Machetel, Ph., D. A.Yuen, The onset of time‐dependent convection in spherical shells as a clue to chaotic convection in the Earth's mantle, Geophys. Res. Lett., 13, 1470–1473, 1986. |
Библиографическая ссылка |
Machetel, Ph., D. A.Yuen, Infinite Prandtl number spherical shell convection, Mathematical GeophysicsN. J.Vlaar, G.Nolet, M. J. R.Wortel, S. A. P. L.Cloething, 265–290, D. Reidel, Norwell, Mass., 1988. |
Библиографическая ссылка |
Maier, R. S., L. R.Petzold, W.Rath, Parallel solution of large‐scale differential‐algebraic systems. Concurrency: Practice and Experience, 1995. |
Библиографическая ссылка |
Nakada, M., K.Lambeck, Late Pleistocene and Holocene sea‐level change in the Australian region and mantle rheology, Geophys. J., 96, 497–517, 1989. |
Библиографическая ссылка |
Olson, P. L., G.Schubert, C. A.Anderson, Plume formation in the D“‐layer and the roughness of the core‐mantle boundary, Nature, 327, 409–415, 1987. |
Библиографическая ссылка |
Osako, M., E.Ito, Thermal diffusivity of MgSiO<sub>3</sub>‐perovskite, Geophys. Res. Lett., 18, 239–242, 1991. |
Библиографическая ссылка |
Ricard, Y., B.Wuming, Inferring the viscosity and three‐dimensional density structure of the mantle from geoid, topography and plate velocities, Earth Planet. Sci. Lett., 105, 561–571, 1991. |
Библиографическая ссылка |
Richards, M. A., R. A.Duncan, V. E.Courtillot, Flood basalts and hot‐spot tracks: Plume head and tails, Science, 246, 103–107, 1989. |
Библиографическая ссылка |
Sclater, J. G., J.Jaupart, D.Galson, The heat flow through oceanic and continental crust and the heat loss of the Earth, Rev. Geophys. Space Phys., 18, 269–311, 1980. |
Библиографическая ссылка |
Segal, A., N.Praagman, Sepran User Manual, Sepra, Leidschendam, Netherlands, 1984. |
Библиографическая ссылка |
Staudigel, H., S. D.King, Ultrafast subduction: the key to slab recycling efficiency and mantle differentiation, Earth Planet. Sci. Lett., 109, 517–530, 1992. |
Библиографическая ссылка |
Su, W. J., A. M.Dziewonski, On the scale of mantle heterogeneity, Phys. Earth Planet. Inter., 74, 29–54, 1992. |
Библиографическая ссылка |
Su, W. J., R. L.Woodward, A. M.Dziewonski, Degree 12 model of shear velocity heterogeneity in the mantle, J. Geophys. Res., 99, 6945–6980, 1994. |
Библиографическая ссылка |
Van den Berg, A. P., P. E.vanKeken, D. A.Yuen, The effects of composite non‐Newtonian and Newtonian rheology on mantle convection, Earth Planet. Sci. Lett., 115, 62–78, 1993. |
Библиографическая ссылка |
Van den Berg, A. P., D. A.Yuen, P. E.vanKeken, Rheological transition in mantle convection with a composite temperature‐dependent, non‐Newtonian and Newtonian theology, Earth Planet. Sci. Lett., 129, 249–260, 1995. |
Библиографическая ссылка |
Van Keken, P. E., Numerical modeling of thermochemically driven fluid flow with non‐Newtonian rheology, applied to the Earth's lithosphere and mantle, PhD Thesis,University of Utrecht,The Netherlands,1993. |
Библиографическая ссылка |
Van Keken, P. E., D. A.Yuen, A. P.vanden Berg, Implications for mantle dynamics from the high melting temperature of perovskite, Science, 264, 1437–1440, 1994. |
Библиографическая ссылка |
Van Keken, P. E., D. A.Yuen, L. R.Petzold, DASPK: a new high order and adaptive time‐integration technique with applications to mantle convection with strongly temperature‐ and pressure dependent rheology, Geophys. Astrophys. Fluid Dynam., 1995. |
Библиографическая ссылка |
Weertman, J., The creep strength of the Earth's mantle, Rev. Geophys. Space Phys., 8, 145–168, 1970. |
Библиографическая ссылка |
Weertman, J., J. R.Weertman, High temperature creep of rock and mantle viscosity, Annu. Rev. Geophys., 3, 293–315, 1975. |
Библиографическая ссылка |
Weinstein, S. A., P. L.Olson, D. A.Yuen, Time‐dependent large aspect‐ratio thermal convection in the Earth's mantle, Geophys. Astrophys. Fluid Dynam., 47, 157–197, 1989. |
Библиографическая ссылка |
Yoo, C. S., N. C.Holmes, M.Ross, D. J.Webb, C.Pike, Shock temperatures and melting of iron at Earth core conditions, Phys. Rev. Lett, 70, 3931–3935, 1993. |
Библиографическая ссылка |
Zebib, A., G.Schubert, J. M.Straus, Infinite Prandtl number thermal convection in a spherical shell, J. Fluid Mech., 97, 257–269, 1980. |
Библиографическая ссылка |
Zerr, A., R.Boehler, Melting of MgSiO<sub>3</sub>‐perovskite to 625 kilobars: Indication of a high melting temperature in the lower mantle, Science, 262, 553–555, 1993. |
Библиографическая ссылка |
Zerr, A., R.Boehler, Constraints on the melting tem perature of the lower mantle from high‐pressure experiments on MgO and magnesiowustite, Nature, 371, 506–508, 1994. |
Библиографическая ссылка |
Zhang, S., D. A.Yuen, Effects of viscous heating on plume dynamics in a three‐dimensional compressible spherical‐shell model, Eos Trans. AGU, 75, 687, 1994. |