Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Poli, Stefano
Автор Schmidt, Max W.
Дата выпуска 1995
dc.description Phase relationships in natural andesitic and synthetic basaltic systems were experimentally investigated from 2.2 to 7.7 GPa, and 550°C to 950°C, in the presence of an aqueous fluid, in order to determine the stability of hydrous phases in natural subducted crustal material and to constrain reactions resulting in the release of water from subduction zones to the mantle wedge. Water reservoirs in subducted oceanic crust at depths exceeding the amphibole stability field (>70–80 km) are lawsonite (11 wt % H<sub>2</sub>O), Mg‐chloritoid (8 wt %), talc (5 wt %), and zoisite‐clinozoisite (2 wt %) in basaltic rocks; and lawsonite, zoisite‐clinozoisite, phengite (4 wt %) and staurolite (2 wt %) in andesitic compositions. The thermal stability of lawsonite at 6.0 GPa extends to ≈800°C and 870°C in basaltic and andesitic compositions, respectively. At pressures above amphibole‐out (2.3–2.5 GPa) lawsonite reacts through continuous reactions with steep positive dP/dT slopes to zoisite‐clinozoisite (until 3.0–3.2 GPa), and at higher pressures (to more than 7.7 GPa) to assemblages containing garnet + clinopyroxene and garnet + clinopyroxene + kyanite in basaltic and andesitic compositions, respectively. On the contrary, the breakdown of zoisite‐clinozoisite is mainly pressure‐sensitive. Phengite represents the hydrous phase with the largest stability field encountered in this study. In andesite, phengite is stable to more than 7.7 GPa and more than 920°C. Talc and staurolite contribute in minor amounts to the water balance in basaltic and andesitic rock compositions. A model for water release from the subducted slab is developed combining thermal models for subduction zones with the experimentally determined phase relationships. Up to 1 wt % and 2 wt % H<sub>2</sub>O in basaltic and andesitic rocks, respectively, can be stored to depths beyond 200 km in cold subduction zones, mainly by lawsonite and phengite. Dehydration rates are high until amphibole‐out, and relatively low at greater depths. The amphibole‐out reactions are found to release a significant amount of water in a depth interval of several kilometers, however, they do not represent a discrete pulse of fluid and do not completely dehydrate the descending slab. Fluid release at depths greater than 200 km through phengite and progressive lawsonite breakdown would hydrate the overlying mantle, causing the generation of amphibole or phlogopite peridotite. At higher geothermal gradients, epidote/zoisite contributes to fluid flux to the mantle wedge at 100–120 km depth. The extensive stability field of phengite may greatly enhance the role of sediments and the small amount of potassium in mafic compositions for the fluid budget in subduction zones at increasing depth.
Формат application.pdf
Копирайт Copyright 1995 by the American Geophysical Union.
Тема ATMOSPHERIC COMPOSITION AND STRUCTURE
Тема Evolution of the atmosphere
Тема GEOCHEMISTRY
Тема Composition of the mantle
Тема MINERALOGY AND PETROLOGY
Тема Experimental mineralogy and petrology
Тема TECTONOPHYSICS
Тема Evolution of the Earth
Название H<sub>2</sub>O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems
Тип article
DOI 10.1029/95JB01570
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 100
Первая страница 22299
Последняя страница 22314
Выпуск B11
Библиографическая ссылка Austin, P., J. G.Ryan, A.Hochstaedter, P. K.Kepezhinskas, M. J.Defant, B/Be characteristics of the Kamchatka arc, Eos Trans. AGU, 7416, Spring Meet. Suppl, 348, 1993.
Библиографическая ссылка Berman, R. G., Internally‐consistent thermodynamic data for minerals in the system Na<sub>2</sub>O‐K<sub>2</sub>O‐CaO‐MgO‐FeO‐Fe<sub>2</sub>O<sub>3</sub>‐Al<sub>2</sub>O<sub>3</sub>‐SiO<sub>2</sub>‐TiO<sub>2</sub>‐H<sub>2</sub>O‐CO<sub>2</sub>, J. Petrol., 29, 445–522, 1988.
Библиографическая ссылка Berman, R. G., Mixing properties of Ca‐Mg‐Fe‐Mn garnets, Am. Mineral., 75, 328–344, 1990.
Библиографическая ссылка Brodholt, J. P., B. J.Wood, Simulation of the structure and thermodynamic properties of water at high pressure and temperature, J. Geophys. Res., 98, 519–536, 1993.
Библиографическая ссылка Brophy, J. G., B. D.Marsh, On the origin of high‐alumina arc basalt and the mechanics of melt extraction, J. Petrol., 27, 763–789, 1986.
Библиографическая ссылка Brown, E. H., A. E.Ghent, Mineralogy and phase relations in the blueschist facies of the Black Butte and Ball Rock areas, northen California Coast Ranges, Am. Mineral., 68, 365–372, 1983.
Библиографическая ссылка Caron, J.‐M., G.Péquignot, The transition between blueschist and lawskonite‐bearing eclogites based on observations from Corsican metabasalts, Lithos, 19, 205–218, 1986.
Библиографическая ссылка Carswell, D. A., Eclogites and the eclogite facies: definitions and classifications, Eclogite Facies RocksD. A.Carswell, 1–13, Blackie, New York, 1990.
Библиографическая ссылка Cocker, J. D., B. J.Griffin, K.Muehlenbachs, Oxygen and carbon isotope evidence for seawater‐hydrothermal alterattion of the Macquarie Island ophiolite, Earth Planet. Sci. Lett., 61, 112–122, 1982.
Библиографическая ссылка Connolly, J. A. D., Multivariable phase diagrams: An algorithm based on generalized thermodynamics, Am. J. Sci., 290, 666–718, 1990.
Библиографическая ссылка Crawford, A. J., T. J.Falloon, D. H.Green, Classification, petrogenesis and tectonic setting of boninites, Boninites and Related RocksA. J.Crawford, 2–49, Unwin Hyman, Boston, Mass., 1988.
Библиографическая ссылка Davidson, P. M., D. H.Lindsley, Thermodynamic analysis of pyroxene‐olivine‐quartz equilibria in the system CaO‐MgO‐FeO‐SiO<sub>2</sub>, Am. Mineral., 74, 18–30, 1989.
Библиографическая ссылка Davies, J. H., M. J.Bickle, A physical model for the volume and composition of melt produced by hydrous fluxing above subduction zones, Philos. Trans. R. Soc. London A, 335, 355–364, 1991.
Библиографическая ссылка Davies, J. H., D. J.Stevenson, Physical model of source region of subduction zone volcanics, J. Geophys. Res., 97, 2037–2070, 1992.
Библиографическая ссылка Defant, M. J., M. S.Drummond, Subducted lithosphere‐derived andesitic and dacitic rocks in young volcanic arc setting, Nature, 347, 662–665, 1990.
Библиографическая ссылка Delany, J. M., H. C.Helgeson, Calculation of the termodynamic consequences of dehydration in subductiong oceanic crust to 100 kb and > 800°C, Am. J. Sci., 278, 638–686, 1978.
Библиографическая ссылка Ellis, D. J., D. H.Green, An experimental study of the effect of Ca upon garnet‐clinopyroxene Fe‐Mg exchange equilibria, Contrib. Mineral. Petrol., 71, 13–22, 1979.
Библиографическая ссылка El‐Shazly, A. K., J. G.Liou, Glaucophane chloritoid‐bearing assemblages from NE Oman: Petrologic significance and a petrogenetic grid for high P metapelites, Contrib. Mineral. Petrol., 107, 180–201, 1991.
Библиографическая ссылка Fedotov, S. A., P. I.Tokarev, Earthquakes, characteristics of the upper mantle under Kamchatka, and their connection with volcanism (according to data collected up to 1971), Bull. Volcanol., 37, 245–257, 1973.
Библиографическая ссылка Furukawa, Y., Magmatic processes under arcs and formation of the volcanic front, J. Geophys. Res., 98, 8309–8319, 1993a.
Библиографическая ссылка Furukawa, Y., Depth of the decoupling plate interface and thermal structure under arcs, J. Geophys. Res., 98, 20005–20013, 1993b.
Библиографическая ссылка Gill, J., Orogenic Andesites and Plate Tectonics, 390, Springer‐Verlag, New York, 1981.
Библиографическая ссылка Green, D. H., A. E.Ringwood, An experimental investigation of the gabbro to eclogite transformation and its petrological applications, Geochim. Cosmochim. Acta, 31, 767–833, 1967.
Библиографическая ссылка Hawthorne, F. C., L.Ungaretti, R.Oberti, F.Caucia, A.Callegari, The crystal chemistry of staurolite, III, Local disorder and chemical composition, Can. Mineral., 31, 597–616, 1993.
Библиографическая ссылка Heinrich, W., E.Althaus, Experimental determination of the reactions 4 lawsonite + 1 albite = 1 paragonite + 2 zoisite + 2 quartz + 6 H<sub>2</sub>O and 4 lawsonite + 1 jadeite = 1 paragonite + 2 zoisite + 1 quartz + 6 H<sub>2</sub>O, Neues. Jahrb. Miner. Monatsh., 11, 516–528, 1988.
Библиографическая ссылка Hellman, P. L., T. H.Green, The high pressure experimental crystallization of staurolite in hydrous mafic compositions, Contrib. Mineral. Petrol., 68, 369–372, 1979.
Библиографическая ссылка Helmstaedt, H., D. J.Schulze, Eclogite‐facies ultramafic xenoliths from Colorado Plateau diatreme breccias: comparison with eclogites in crustal environments, evaluation of the subduction hypothesis, and implications for eclogite xenoliths from diamondiferous kimberlites, Eclogite and Eclogite Facies RocksD. C.Smith, 387–450, Elsevier, New York, 1988.
Библиографическая ссылка Holland, T. J. B., R.Powell, An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: The system K<sub>2</sub>O‐Na<sub>2</sub>O‐CaO‐MgO‐MnO‐FeO‐Fe<sub>2</sub>O<sub>3</sub>‐Al<sub>2</sub>O<sub>3</sub>‐TiO<sub>2</sub>‐SiO<sub>2</sub>‐C‐H<sub>2</sub>‐O<sub>2</sub>, J. Metamorph. Geol., 8, 89–124, 1990.
Библиографическая ссылка Hsui, A. T., M. N.Toksöz, The evolution of thermal structures beneath a subduction zones, Oceanic Ridges and Arcs; Geodinamic Processes, Dev. Geotectonics, 14M. N.Toksoz, S.Uyeda, J.Francheteau, 325–342, Elsevier, New York, 1980.
Библиографическая ссылка Irifune, T., T.Sekine, A. E.Ringwood, W. O.Hibberson, The eclogite‐garnetite transformation at high pressure and some geophysical implications, Earth Planet. Sci. Lett., 77, 245–256, 1986.
Библиографическая ссылка Ito, E., H.Sato, Effect of phase transformations on the dynamics of the descending slab, High Pressure Research: Application to Earth and Planetary SciencesY.Syono, M. H.Manghnani, 257–262, Terrapub, Tokyo, 1992.
Библиографическая ссылка Ito, E., H.Harris, A. T.AndersonJr., Alteration of oceanic crust and geologic cycling of chlorine and water, Geochim. Cosmochim. Acta, 47, 1613–1624, 1983.
Библиографическая ссылка Ito, K., G. C.Kennedy, An experimental study of the basalt‐garnet granulite‐eclogite transition, The Structure and Physical Properties of the Earth's Crust, Geophy. Monogr. Ser., 14J.Heacock, 303–314, AGU, Washington, D.C., 1971.
Библиографическая ссылка Kersting, A. B., R. J.Arculus, Pb systematics of Klyuchevskoy volcano, Kamchatka: implications for magma genesis and crustal recycling in the Kamchatka arc, Eos Trans. AGU, 7416, Spring Meet. Suppl, 348, 1993.
Библиографическая ссылка Kress, V. C., I. S. E.Carmichael, Stoichiometry of the iron oxidation reaction in silicate melts, Am. Mineral., 73, 1267–1274, 1988.
Библиографическая ссылка Kurtz, R. D., DeLaurier, and J.C. Gupta, The electrical conductivity distribution beneath Vancouver island: A region of active plate subduction, J. Geophys. Res., 95, 10929–10946, 1990.
Библиографическая ссылка Lambert, I. B., P. J.Wyllie, Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications, J. Geol., 80, 693–708, 1972.
Библиографическая ссылка Martin, H., Effect of steeper Archean geothermal gradient on geochemistry of subduction zone magmas, Geology, 14, 753–756, 1986.
Библиографическая ссылка Melson, W. G., T. L.Vallier, T. L.Wright, G.Byerly, J.Nelen, Chemical diversity of abyssal volcanic gears erupted along Pacific, Atlantic and Indian ocean‐sea floor spreading centers, The Geophysics of the Pacific Ocean Basin and Its Margin, Geophys. Monogr. Ser., 19G. H.Sutton, M. H.Manghnani, R.Moberly, 351–377, AGU, Washington, D.C., 1976.
Библиографическая ссылка Messiga, B., R.Tribuzio, P.Bottazzi, L.Ottolini, An ion microprobe study on trace element composition of clinopyroxenes from blueschist and eclogitized Fe‐Ti‐gabbros (Ligurian Alps, northwestern Italy): Some petrologic considerations, Geochim. Cosmochim. Acta, 59, 59–75, 1995.
Библиографическая ссылка Myers, J. D., B. D.Marsh, A. K.Sinha, Geochemical and strontium isotopic characteristics of parental Aleutian arc magmas: evidence from the basaltic lavas of Atka, Contrib. Mineral. Petrol., 94, 1–11, 1985.
Библиографическая ссылка Nakamura, Y., I.Kushiro, Composition of the gas phase in Mg<sub>2</sub>SiO<sub>4</sub>‐SiO<sub>2</sub>‐H<sub>2</sub>O at 15 kbar, Year Book Carnegie Inst. Washington, 73, 255–258, 1974.
Библиографическая ссылка Nicholls, I. A., A. E.Ringwood, Effect of water on olivine stability in tholeiites and the production of silica‐saturated magmas in the island‐arc environment, J. Geol., 81, 285–300, 1973.
Библиографическая ссылка Pattison, D. R. M., R. C.Newton, Reversed experimental calibration of the garnet‐clinopyroxene Fe‐Mg exchange thermometer, Contrib. Mineral. Petrol., 101, 87–103, 1989.
Библиографическая ссылка Pawley, A. R., J. R.Holloway, Water sources for Subduction Zone Volcanism: New Experimental Constraints, Science, 260, 664–667, 1993.
Библиографическая ссылка Peacock, S. M., Fluid processes in subduction zones, Science, 248, 329–337, 1990.
Библиографическая ссылка Peacock, S. M., T.Rushmer, A. B.Thompson, Partial melting of subducting oceanic crust, Earth Planet. Sci. Lett., 121, 227–244, 1994.
Библиографическая ссылка Philippot, P., Fluid‐melt‐rock interaction in mafic eclogites and coesite‐bearing metasediments: Constraints on volatile recycling during subduction, Chem. Geol., 108, 93–112, 1993.
Библиографическая ссылка Poli, S., The amphibolite‐eclogite transformation: An experimental study on basalt, Am. J. Sci., 293, 1061–1107, 1993.
Библиографическая ссылка Ridley, J., Evidence of a temperature‐dependent ‘blueschist’ to ‘eclogite’ transformation in high‐pressure metamorphism of metabasic rocks, J. Petrol., 25, 852–870, 1984.
Библиографическая ссылка Schmidt, M. W., Phase relations and compositions in tonalite as a function of pressure: An experimental study at 650°C, Am. J. Sci., 293, 1011–1060, 1993.
Библиографическая ссылка Schmidt, M. W., S.Poli, The stability of lawsonite and zoisite at high pressures: Experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere, Earth. Planet. Sci. Lett., 124, 105–118, 1994.
Библиографическая ссылка Schreyer, W., Experimental studies on metamorphism of crustal rocks under mantle pressures, Mineral. Mag., 52, 1–26, 1988.
Библиографическая ссылка Schubert, G., D. A.Yuen, D. L.Turcotte, Role of phase transitions in a dynamic mantle, Geophys. J. R. Astron. Soc., 42, 705–735, 1975.
Библиографическая ссылка Shi, Y., C.Wang, Generation of high pore pressures in accretionary prisms: inferences from the Barbados subduction complex, J. Geophys. Res., 93, 8893–8910, 1988.
Библиографическая ссылка Sorensen, S. S., Petrologic and geochemical comparison of the blueschist and greenschist units of the Catalina Schist terrane, southern California, Blueschists and EclogitesB. W.Evans, E. H.Brown, Mem. Geol. Soc. Am., 164, 59–76, 1986.
Библиографическая ссылка Spiegelman, M., D.McKenzie, Simple 2‐D models for melt extraction at mid‐ocean ridges and island arcs, Earth Planet. Sci. Lett., 83, 137–152, 1987.
Библиографическая ссылка Sudo, A., Y.Tatsumi, Phlogopite and K‐amphibole in the upper mantle: Implication for magma genesis in subduction zones, Geophys. Res. Lett., 17, 29–32, 1990.
Библиографическая ссылка Tatsumi, Y., Formation of the volcanic front in subduction zones, Geophys. Res. Lett., 13, 717–720, 1986.
Библиографическая ссылка Tatsumi, Y., Migration of fluid phases and genesis of basalt magmas in subduction zones, J. Geophys. Res., 94, 4697–4707, 1989.
Библиографическая ссылка Tatsumi, Y., D. L.Hamilton, R. W.Nesbitt, Chemical characteristics of fluid phase released from a subducted litosphere and origin of arc magmas: Evidence from high‐pressure experiments and natural rocks, J. Volcanol. Geotherm. Res., 29, 293–309, 1986.
Библиографическая ссылка Tatsumi, Y., M.Murasaki, S.Nohda, Across‐arc variation of lava chemistry in the Izu‐Bonin Arc: Identification of subduction components, J. Volc. Geotherm. Res., 49, 179–190, 1992.
Библиографическая ссылка Toksöz, M. N., A. T.Hsui, A review of the thermal‐mechanical structures at convergent plate boundaries and their implications for crust/mantle recycling, Crust/Mantle Recycling at Convergent ZonesS. R.Hart, L.Gülen, 75–80, Kluwer Academic, Norwell, Mass., 1989.
Библиографическая ссылка Toksöz, M. N., J. W.Minear, B. R.Julian, Temperature field and geophysical effects of a downgoing slab, J. Geophys. Res., 76, 1113–1138, 1971.
Библиографическая ссылка Tribuzio, R., B.Messiga, Trace element redistribution under high pressure/low temperature metamorphism of ophiolitic Fe‐Ti‐gabbros (Ligurian Alps, north western Italy)International Mineralogical Association 16th MeetingPisa, 1994.
Библиографическая ссылка Van den Beukel, J., R.Wortel, Temperatures and shear stresses in the upper part of a subduction zone, Geophys. Res. Lett., 14, 1057–1060, 1987.
Библиографическая ссылка Vidal, O., B.Goffe, T.Theye, Experimental study of the stability of sudoite and magnesiocarpholite and calculation of a new petrogenetic grid for the system FeO‐MgO‐Al<sub>2</sub>O<sub>3</sub>‐SiO<sub>2</sub>‐H<sub>2</sub>O, J. Metamorph. Geol., 10, 603–614, 1992.
Библиографическая ссылка Vidal, O., T.Theye, C.Chopin, Experimental study of chloritoid stability at high pressure and various <ƒ>f</ƒ>O<sub>2</sub> conditions, Contrib. Mineral. Petrol., 118, 256–270, 1994.
Библиографическая ссылка Vielzeuf, D., J. M.Montel, Partial melting of metagreywackes, I, Fluid‐absent experiments and phase relationships, Contrib. Mineral. Petrol., 117, 375–393, 1994.
Библиографическая ссылка Walker, D., Lubrication, gasketing, and precision in multianvil experiments, Am. Mineral., 76, 1092–1100, 1991.
Библиографическая ссылка Walker, D., M. A.Carpenter, C. M.Hitch, Some simplifications to multianvil devices for high pressure experiments, Am. Mineral., 75, 1020–1028, 1990.
Библиографическая ссылка Watson, B. F., K.Fujita, Tectonic evolution of Kamchatka and the Sea of Okhotsk and implications for the Pacific Basin, Tectonostratigraphic TerranesD. G.Howell, 342–348, Circum‐Pac. Counc. for Energy and Miner. Resour., Houston, Tex., 1985.
Библиографическая ссылка Watson, K. D., D. M.Morton, Eclogite inclusions in kimberlite pipes at Garnet Ridge, northeastern Arizona, Am. Mineral., 54, 267–285, 1969.
Библиографическая ссылка Wyllie, P. J., Magma genesis, plate tectonics, and chemical differentiation of the Earth, Rev. Geophys., 26, 370–404, 1988.
Библиографическая ссылка Yoder, H. S., The MgO‐Al<sub>2</sub>O<sub>3</sub>‐SiO<sub>2</sub>‐H<sub>2</sub>O system and the related metamorphic facies, Am. J. Sci., 250‐A, 569–627, 1952.

Скрыть метаданые