Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Morris, Richard V.
Автор Lauer, Howard V.
Автор Lawson, Charles A.
Автор Gibson, Everett K.
Автор Nace, Georg Ann
Автор Stewart, Cheri
Дата выпуска 1985
dc.description Spectral and other physicochemical properties were determined for a suite of submicron powders of hematite (α‐Fe<sub>2</sub>O<sub>3</sub>), maghemite (γ‐Fe<sub>2</sub>O<sub>3</sub>), magnetite (Fe<sub>3</sub>O<sub>4</sub>), goethite (α‐FeOOH), and lepidocrocite (γ‐FeOOH). The spectral reflectivity measurements were made between 0.35 and 2.20 μm over the temperature interval between about −110° and 20°C. Other physicochemical properties determined were mean particle diameter, particle shape, chemical composition, crystallographic phase, magnetic properties, and Mössbauer properties. Only the magnetite powders have significant departures from the stoichiometric phase; they are actually cation‐deficient magnetites having down to about 18.0 wt % FeO as compared with 31.0 wt % FeO for stoichiometric magnetite. A structured absorption edge due to crystal field transitions and extending from weak absorption in the near‐IR to intense absorption in the near‐UV is characteristic of the ferric oxides and oxyhydroxides and is responsible for their intense color. Particularly for hematite, the number and position of the spectral features are consistent with significant splitting of the degenerate cubic levels by noncubic components of the crystal field. The position of the crystal‐field band at lowest energy, assigned to the envelope of the components of the split cubic <sup>4</sup>T<sub>1</sub> level, is near 0.86, 0.91, 0.92, and 0.98 μm at room temperature for hematite, goethite, maghemite, and lepidocrocite, respectively. Comparison with Mössbauer data suggests covalent character increases sequentially through the aforementioned series. The positions of the spectra features are relatively independent of temperature down to about −110°C. The maximum shifts observed were on the order of about 0.02 μm shortward for the ferric oxyhydroxides. Variations in the magnitude of the reflectivity of the hematite powders as a function of mean particle diameter are consistent with scattering theory. The absorption strength of the crystal‐field bands increases with increasing mean particle diameter over the range 0.1–0.8 μm; visually this corresponds to a change in color from orange to deep purple. The position of the split cubic <sup>4</sup>T<sub>1</sub> band shifts longward by about 0.02 μm with decreasing mean particle diameter over the same range; this trend is consistent with wavelength‐dependent scattering. The cation‐deficient magnetite powders are very strong absorbers throughout the near‐UV, visible and near‐IR; their spectral properties are independent of temperature between about −110 and 20°C.
Формат application.pdf
Копирайт Copyright 1985 by the American Geophysical Union.
Тема EXPLORATION GEOPHYSICS
Тема Magnetic and electrical methods
Тема GEOMAGNETISM AND PALEOMAGNETISM
Тема Rock and mineral magnetism
Тема MINERAL PHYSICS
Тема Optical, infrared, and Raman spectroscopy
Тема PHYSICAL PROPERTIES OF ROCKS
Тема Magnetic and electrical properties
Тема PLANETARY SCIENCES: SOLID SURFACE PLANETS
Тема Planetology: Solid Surface Planets and Satellites: Physical properties of materials
Название Spectral and other physicochemical properties of submicron powders of hematite (α‐Fe<sub>2</sub>O<sub>3</sub>), maghemite (γ‐Fe<sub>2</sub>O<sub>3</sub>), magnetite (Fe<sub>3</sub>O<sub>4</sub>), goethite (α‐FeOOH), and lepidocrocite (γ‐FeOOH)
Тип article
DOI 10.1029/JB090iB04p03126
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 90
Первая страница 3126
Последняя страница 3144
Выпуск B4
Библиографическая ссылка Armstrong, R. J., A. H.Morrish, G. A.Sawatzky, Mössbauer study of ferric ions in a spinel, Phys. Lett., 23, 414–416, 1966.
Библиографическая ссылка Blake, R. L., R. E.Hessevick, T.Zoltai, L. W.Finger, Refinement of the hematite structure, Am. Mineral., 51, 123–129, 1966.
Библиографическая ссылка Bernal, J. D., D. R.Dasgupta, A. L.MacKay, The oxides and hydroxides of iron and their structural inter‐relationships, Clay Min. Bull., 4, 15–30, 1959.
Библиографическая ссылка Bozorth, R. M., Ferromagnetism, D. Van Nostrand, Princeton, N.J., 1951.
Библиографическая ссылка Buckingham, W. F., S. E.Sommer, Mineralogical characterization of rock surfaces formed by hydrothermal alteration and weathering—Application to remote sensing, Econ. Geol., 78, 664–674, 1983.
Библиографическая ссылка Burns, R. G., D. A.Nolet, K. M.Parkin, C. A.McCammon, K. B.Schwartz, Mixed‐valence minerals of iron and titanium: Correlations of structural, Mossbauer, and electronic spectral data, Mixed‐Valence CompoundsD. B.Brown, 295–336, D. Reidel, Hingham, Mass., 1980.
Библиографическая ссылка Chen, C. T., B. D.Cahan, Visible and ultraviolet optical properties of single‐crystal and polycrystalline hematite measured by spectroscopic ellipsometry, J. Opt. Soc. Am., 71, 932–934, 1981.
Библиографическая ссылка Cotton, F. A., Chemical Applications of Group Theory, Interscience, New York, 1963.
Библиографическая ссылка Daniels, J. M., A.Rosencwaig, Mössbauer spectroscopy of stoichiometric and non‐stoichiometric magnetite, J. Phys. Chem. Solids, 30, 1561–1571, 1969.
Библиографическая ссылка DeGrave, E., L. H.Bowen, S. B.Weed, Mössbauer study of aluminum‐substituted hematites, J. Magn. Magn. Mater., 27, 98–108, 1982.
Библиографическая ссылка Dunlop, D. J., Superparamagnetic and single‐domain threshold sizes in magnetite, J. Geophys. Res., 78, 1780–1793, 1973.
Библиографическая ссылка Folk, R. L., V. C.Ward, Brazos River Bar, a study in the significance of grain‐size parameters, J. Sediment. Petrol., 27, 3–26, 1957.
Библиографическая ссылка Forsyth, J. B., I. O.Hedley, C. E.Johnson, The magnetic structure and hyperfine field of goethite (α‐FeOOH), J. Phys. C, 1, 179–188, 1968.
Библиографическая ссылка Fysh, S. A., P. E.Clark, Aluminous goethite: A Mössbauer study, Phys. Chem. Miner., 8, 180–187, 1982.
Библиографическая ссылка GibsonJr., E. K., G. W.Moore, Carbon and sulfur distributions and abundances in lunar fines, Proc. Lunar Sci. Conf., 4th, 1577–1586, 1973.
Библиографическая ссылка Goodenough, J. B., The Verwey transition revisited, Mixed‐Valence CompoundsD. B.Brown, 413–425, D. Reidel, Hingham, Mass., 1980.
Библиографическая ссылка Gooding, J. L., Chemical weathering on Mars: Thermodynamic stabilities of primary minerals (and their alteration products) from mafic igneous rocks, Icarus, 33, 483–513, 1978.
Библиографическая ссылка Greenwood, N. N., T. C.Gibb, Mössbauer Spectroscopy, Chapman and Hall, London, 1971.
Библиографическая ссылка Hancock, K. R., Mineral pigments, inIndustrial Minerals and Rocks,4th ed., pp.335–357,American Institute of Mining, Metallurgical, and Petroleum Engineers,Baltimore, Md.,1975.
Библиографическая ссылка Hargraves, R. B., D. W.Collinson, R. E.Arvidson, P. M.Cates, Viking magnetic properties experiment: Extended mission results, J. Geophys. Res., 84, 8379–8384, 1979.
Библиографическая ссылка Hedelman, S., W. N.Mitchell, Some new diffuse and specular reflectance accessories for the Cary Models 14 and 15 spectrophotometer, Modern Aspects of Reflectance SpectroscopyW. W.Wendlandt, 158–169, Plenum, New York, 1968.
Библиографическая ссылка Hottel, H. C., A. F.Sarofim, L. B.Evans, I. A.Vasalos, Radiative transfer in anisotropically scattering media: Allowance for fresnel reflection at the boundaries, J. Heat Transfer, C90, 56–62, 1968.
Библиографическая ссылка Huguenin, R. L., Photostimulated oxidation of magnetite, 1, Kinetics and alteration phase identification, J. Geophys. Res., 78, 8481–8493, 1973.
Библиографическая ссылка Huguenin, R. L., Mars: Surface mineralogy from reflectance spectra (abstract), Lunar Planet. Sci., 8, 478–480, 1977.
Библиографическая ссылка Hunt, G. R., R. P.Ashley, Spectra of altered rocks in the visible and near infrared, Econ. Geol., 74, 1613–1629, 1979.
Библиографическая ссылка Hunt, G. R., J. W.Salisbury, Visible and near‐infrared spectra of minerals and rocks, I, Silicate minerals, Mod. Geol., 1, 283–300, 1970.
Библиографическая ссылка Hunt, G. R., J. W.Salisbury, C. J.Lenhoff, Visible and near‐infrared spectra of minerals and rocks, III, Oxides and hydroxides, Mod. Geol., 2, 195–205, 1971.
Библиографическая ссылка , Joint Committee on Powder Diffraction Standards (JCPDS), Mineral Powder Diffraction File: Data Book, JCPDS International Center for Diffraction Data, Swarthmore, Pa., 1980.
Библиографическая ссылка Johnson, C. E., Antiferromagnetism of FeOOH: A Mössbauer effect study, J. Phys. C, 2, 1996–2002, 1969.
Библиографическая ссылка Johnson, H. P., R. T.Merrill, Low‐temperature oxidation of a single‐domain magnetite, J. Geophys. Res., 79, 5533–5534, 1974.
Библиографическая ссылка Kahn, F. J., P. S.Pershan, J. P.Remeika, Ultraviolet magneto‐optical properties of single‐crystal orthoferrites, garnets, and other ferric oxide compounds, Phys. Rev., 186, 891–918, 1969.
Библиографическая ссылка Konig, E., S.Kremer, Ligand Field Energy Diagrams, Plenum, New York, 1977.
Библиографическая ссылка Kortum, G., Reflectance Spectroscopy, Springer‐Verlag, New York, 1969.
Библиографическая ссылка Krebs, J. J., W. G.Maisch, Exchange effects in the optical‐absorption of Fe<sup>3+</sup> in Al<sub>2</sub>O<sub>3</sub>, Phys. Rev. B, 4, 757–769, 1971.
Библиографическая ссылка Lehmann, G., H.Harder, Optical spectra of di‐ and trivalent iron in corundum, Am. Mineral., 5, 98–105, 1970.
Библиографическая ссылка Lindsley, D. H., The crystal chemistry and structure of oxide minerals as exemplified by the Fe‐Ti oxides, Oxide Minerals, Short Course Notes Mineral. Soc. Am., 3, L‐1–L‐60, 1976.
Библиографическая ссылка Low, W., Paramagnetic Resonance in Solids,suppl. 2,Solid State Physics,Academic,Orlando, Fla.,1960.
Библиографическая ссылка Marfunin, A. S., Physics of Minerals and Inorganic Materials, Springer‐Verlag, New York, 1979.
Библиографическая ссылка Marusak, L. A., R.Messier, W. B.White, Optical absorption spectrum of hematite, Fe<sub>2</sub>O<sub>3</sub> near IR to UV, J. Phys. Chem. Solids, 41, 981–984, 1980.
Библиографическая ссылка Maxwell, J. A., Rock and Mineral Analysis, 419–421, Interscience, New York, 1968.
Библиографическая ссылка McCord, T. B., R. B.Singer, B. R.Hawke, J. B.Adams, D. L.Evans, J. W.Head, P. J.Mouginis‐Mark, C. M.Pieters, R. L.Huguenin, S. H.Zisk, Mars: Definition and characterization of global surface units with emphasis on composition, J. Geophys. Res., 87, 10129–10148, 1982.
Библиографическая ссылка Morris, R. V., H. V.LauerJr., The case against UV photo‐stimulated oxidation of magnetite, Geophys. Res. Lett., 7, 605–608, 1980.
Библиографическая ссылка Morris, R. V., H. V.LauerJr., Stability of goethite (a‐FeOOH) and lipidocrocite (γ‐FeOOH) to dehydration by UV radiation: Implication for their occurrence on the martian surface, J. Geophys. Res., 86, 10893–10899, 1981.
Библиографическая ссылка Morris, R. V., H. V.LauerJr., Optical spectra and band assignments for the hematite (α‐Fe<sub>2</sub>O<sub>3</sub>)‐corundum (α‐Al<sub>2</sub>O<sub>3</sub>) series (abstract), Lunar Planet. Sci., 14, 534–525, 1983.
Библиографическая ссылка Morris, R. V., S. C.Neely, Optical properties of hematite‐magnetite mixtures: Implications for Mars, Lunar Planet. Sci., 3, 548–549, 1982.
Библиографическая ссылка Morris, R. V., S. C.Neely, W. W.Mendell, Application of the Kubelka‐Munk theory of diffuse reflectance to geologic problems: The role of scattering, Geophys. Res. Lett., 9, 113–116, 1982.
Библиографическая ссылка Murad, E., The characterization of goethite by Mössbauer aspectroscopy, Am. Mineral., 67, 1007–1011, 1982.
Библиографическая ссылка Murray, J. W., Iron oxides, Marine Minerals, Short Course Notes, Mineral. Soc. Am., 6, 47–98, 1979.
Библиографическая ссылка Nagata, T., Rock Magnetism, Plenum, New York, 1961.
Библиографическая ссылка Norrish, K., B. W.Chappell, X‐ray fluorescence spectrography, Physical Methods in Determinative MineralogyJ.Zussman, Academic, Orlando, Fla., 1967.
Библиографическая ссылка Norrish, K., J. T.Hutton, An accurate X‐ray spectrograph method for the analysis of a wide range of geological samples, Geochim. Cosmochim. Acta, 33, 431–454, 1969.
Библиографическая ссылка Prevot, M., P.Poix, Un calcul du porametre cristallin des titano‐magnetites oxydees, J. Geomagn. Geoelectr., 23, 255–265, 1971.
Библиографическая ссылка Ryan, J. A., R. M.Henry, Mars atmospheric phenomena during major dust storms, as measured at surface, J. Geophys. Res., 84, 2821–2829, 1979.
Библиографическая ссылка Ryskin, Ya. I., The vibrations of protons in minerals: Hydroxyl, water and ammonium, The Infrared Spectra of MineralsV. C.Farmer, 137–181, Mineralogical Society, London, 1974.
Библиографическая ссылка Schlegel, A., S. F.Alvarado, P.Wachter, Optical properties of magnetite (Fe<sub>3</sub>O<sub>4</sub>), J. Phys. C Solid State Phys., 12, 1157–1164, 1979.
Библиографическая ссылка Sherman, D. M., R. G.Burns, V. M.Burns, Spectral characteristics of the iron oxides with application to the martian bright region mineralogy, J. Geophys. Res., 87, 10169–10180, 1982.
Библиографическая ссылка Singer, R. B., Spectral evidence for the mineralogy of high‐albedo soils and dust on Mars, J. Geophys. Res., 87, 10159–10168, 1982.
Библиографическая ссылка Soderblom, L. A., K.Edwards, E. M.Eliason, E. M.Sanchez, M. P.Charette, Global color variations on the martian surface, Icarus, 34, 446–464, 1978.
Библиографическая ссылка Stone, A. J., H. J.Augard, J.Fenger, MOSSPEC program for resolving Mössbauer spectraRisoe Rep. RISO‐M‐1348Danish At. Energy Comm., Roskilde, Den., 1971.
Библиографическая ссылка Stoner, E. C., E. P.Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Philos. Trans. R. Soc. London Ser. A, A240, 599–642, 1948.
Библиографическая ссылка Strangway, D. W., History of the Earth's Magnetic Field, McGraw‐Hill, New York, 1970.
Библиографическая ссылка Strens, R. G. J., B. J.Wood, Diffuse reflectance spectra and optical properties of some iron and titanium oxides and oxyhydroxides, Mineral. Mag., 43, 347–354, 1979.
Библиографическая ссылка Tossell, J. A., D. J.Vaughan, K. H.Johnson, The electronic structure of ferric iron octahedrally coordinated to oxygen: A fundamental polyhedral unit of iron‐bearing oxide and silicate minerals, Nature, 244, 42–45, 1973.
Библиографическая ссылка Verwey, E. J. W., P. W.Haayman, Electronic conductivity and transition point of magnetite, Physica, 8, 979–987, 1941.
Библиографическая ссылка Vincent, R. K., G. R.Hunt, Infrared reflectance from mat surfaces, Appl. Opt., 7, 53–59, 1968.
Библиографическая ссылка Weidner, V. R., J. J.Hsia, Reflection properties of pressed polytetrafluoroethylene powder, J. Opt. Soc. Am., 71, 856–861, 1981.
Библиографическая ссылка Wendlandt, W. W., H. G.Hecht, Reflectance Spectroscopy, Interscience, New York, 1966.
Библиографическая ссылка Wood, D. L., J. P.Remeika, Effect of impurities on the optical properties of yttrium iron garnet, J. Appl. Phys., 38, 1038–1045, 1967.
Библиографическая ссылка Wycoff, R. G. W., Crystal Structures, , II, Interscience, New York, 1963.

Скрыть метаданые