Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Wang, H. F.
Автор Bonner, B. P.
Автор Carlson, S. R.
Автор Kowallis, B. J.
Автор Heard, H. C.
Дата выпуска 1989
dc.description We have developed a comprehensive experimental capability to study thermally induced microfractures in rock. We count acoustic emissions and measure compressional wave velocities while a sample is heated to a maximum temperature of 300°C under confining pressures up to 55 MPa. After a heating cycle we measure crack porosity and crack compressibility. We count the cracks under an SEM, sorting them by grain boundary and intragranular types and by mineral pair occurrence. Our observations reveal that (1) significant thermal cracking occurs in granites heated above 200° or 250°C under 28 and 55 MPa and above 100°C in granites heated under 7 MPa, (2) most newly created thermal cracks close at pressures below 40 MPa (1.5 km depth), (3) grain boundaries between quartz grains or between quartz and another mineral are preferentially cracked, (4) the threshold temperature for acoustic emissions is a positive, linear function of pressure, (5) total acoustic emission counts in Westerly granite heated to 300°C are slightly lower under 55 than 28 MPa confining pressure and are substantially lower under 28 than 7 MPa, (6) the compressional velocity decreases 22% as Westerly granite is heated to 300°C at 7 MPa, 15% at 28 MPa, and 10% at 55 MPa, and (7) greater hysteresis in compressional velocities occurs in samples heated at lower pressures. The acoustic emission counts in Westerly granite during heating show one or more peaks of activity as a function of temperature, with more peaks at lower pressures. We interpret this result to mean that additional crack populations are able to open at lower confining pressures. The curves of acoustic emission count rates can be fit by summing one to three Gaussian density functions.
Формат application.pdf
Копирайт Copyright 1989 by the American Geophysical Union.
Тема PHYSICAL PROPERTIES OF ROCKS
Тема Fracture and flow
Тема Permeability and porosity
Название Thermal stress cracking in granite
Тип article
DOI 10.1029/JB094iB02p01745
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 94
Первая страница 1745
Последняя страница 1758
Выпуск B2
Библиографическая ссылка Atkinson, B. K., D.MacDonald, P. G.Meredith, Acoustic response and fracture mechanics of granite subjected to thermal cycling experiments, Third Conference on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials, 5–18Trans Tech Publications, Clausthal, West Germany, 1984.
Библиографическая ссылка Atkinson, B. K., Stress corrosion and the rate‐dependent tensile failure of a fine‐grained quartz rock, Tectonophysics, 65, 281–290, 1979.
Библиографическая ссылка Bauer, S. J., B.Johnson, Effects of slow uniform heating on the physical properties of Westerly and Charcoal granites, Proc. U.S. Symp. Rock Mech., 20th, 7–18, 1979.
Библиографическая ссылка Bourke, P. J., D. P.Hodgkinson, A. S.Batchelor, Thermal effects in disposal of radioactive waste in hard rock, Proceedings of the Seminar on in Situ Heating Experiments in Geological Formations, 109–116OECD Nuclear Energy Agency, Paris, France, 1978.
Библиографическая ссылка Brace, W. F., Permeability from resistivity and pore shape, J. Geophys. Res., 82, 3343–3349, 1977.
Библиографическая ссылка Carlson, S. R., H. F.Wang, Microcrack porosity and in situ stress in Illinois borehole UPH 3, J. Geophys. Res., 10,421–10,428, 1986.
Библиографическая ссылка Carlsson, H., Stress measurements in the Stripa graniteRep. 7078, SAC‐04Lawrence Berkeley Natl. Lab., Berkeley, Calif., 1977.
Библиографическая ссылка Chayes, F., The finer‐grained calc‐alkaline granites of New England, J. Geol., 60, 207–254, 1952.
Библиографическая ссылка Chen, Y., C.‐Y.Wang, Thermally induced acoustic emission in Westerly granite, Geophys. Res. Lett., 7, 1089–1092, 1980.
Библиографическая ссылка Cooper, H. W., G.Simmons, The effect of cracks on the thermal expansion of rocks, Earth Planet. Sci. Lett., 36, 404–412, 1977.
Библиографическая ссылка Eckstein, Y., P. S.Dahl, C. J.Vitaliano, Petrographic and physical factors controlling thermal conductivity of granitic rocks in Illinois deep holes UPH 1, UPH 2, and UPH 3, J. Geophys. Res., 88, 7381–7385, 1983.
Библиографическая ссылка Feller, W., An Introduction to Probability Theory and Its Applications2nd ed., 461, John Wiley, New York, 1975.
Библиографическая ссылка Forester, R. W., H. P.TaylorJr., <sup>18</sup>O/<sup>16</sup>O, D/H, and <sup>13</sup>C/<sup>12</sup>C studies of the Tertiary igneous complex of Syke, Scotland, Am. J. Sci., 277, 136–177, 1977.
Библиографическая ссылка Fredrich, J. T., T.‐F.Wong, Micromechanics of thermally induced cracking in three crustal rocks, J. Geophys. Res., 12,743–12,764, 1986.
Библиографическая ссылка Fu, Y., A. G.Evans, Some effects of microcracks on the mechanical properties of brittle solids, I., Stress, strain relations, Acta Metall., 33, 1515–1523, 1985.
Библиографическая ссылка Gringarten, A. C., Man‐made geothermal reservoirs, Geothermal Aspects of the Energy Problem, , 1A.Rapolla, G. V.Keller, D. J.Moore, 134–158, Elsevier, New York, 1980.
Библиографическая ссылка Hadley, K., Comparison of calculated and observed crack densities and seismic velocities in Westerly granite, J. Geophys. Res., 81, 3484–3494, 1976.
Библиографическая ссылка Hall, D. L., R. J.Bodnar, B. P.Bonner, Contribution of fluid inclusion decrepitation to acoustic emission profiles of Westerly granite (abstract, Geol. Soc. Am. Abstr. Programs, 19, 690, 1987.
Библиографическая ссылка Harlow, F. W., W. E.Pracht, A theoretical study of geothermal energy extraction, J. Geophys. Res., 77, 7038–7048, 1972.
Библиографическая ссылка Heard, H. C., Steady‐state flow in polycrystalline halite at pressure of 2 kilobars, Flow and Fracture of Rocks, Geophys. Monogr. Ser., 16H. C.Heard, I. Y.Borg, N. C.Carter, C. B.Raleigh, 191–209, AGU, Washington, D. C., 1972.
Библиографическая ссылка Heard, H. C., Thermal expansion and inferred permeability of Climax quartz monzonite to 300°C and 27.6 MPa, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17, 289–296, 1980.
Библиографическая ссылка Heard, H. C., L.Page, Elastic moduli, thermal expansion, and inferred permeability of two granites to 350°C and 55 MPa, J. Geophys. Res., 87, 9340–9348, 1982.
Библиографическая ссылка Ide, J. M., The velocity of sound in rocks and glasses as a function of temperature, J. Geol., 45, 689–716, 1937.
Библиографическая ссылка Johnson, B., A. F.Gangi, J.Handin, Thermal cracking of rock subjected to slow, uniform temperature changes, Proc. U.S. Symp. Rock Mech., 19th, 259–267, 1978.
Библиографическая ссылка Johnston, D. H., M. N.Toksöz, Thermal cracking and amplitude dependent attenuation, J. Geophys. Res., 85, 937–942, 1980.
Библиографическая ссылка Kern, H., The effect of high pressure and high confining pressure on compressional wave velocities in quartz‐bearing and quartz‐free igneous and metamorphic rocks, Tectonophysics, 44, 185–203, 1978.
Библиографическая ссылка Kern, H., Effect of high‐low quartz transition on compressional and shear wave velocities in rocks under high pressure, Phys. Chem. Miner., 4, 161–171, 1979.
Библиографическая ссылка Kowallis, B. J., H. F.Wang, Microcrack study of granitic cores from Illinois Deep Borehole UPH 3, J. Geophys. Res., 88, 7373–7380, 1983.
Библиографическая ссылка Lama, R. D., V. S.Vutukuri, Handbook on Mechanical Properties of Rocks, II, Trans Tech Publications, Aedermannsdorf, Switzerland, 1978.
Библиографическая ссылка Majer, E. L., T. V.McEvilly, Acoustic emission and wave propagation monitoring at the spent fuel test: Climax, Nevada, Int. J. Rock Mech. Min. Sei. Geomech. Abstr., 22, 215–226, 1985.
Библиографическая ссылка Maldonaldo, F., Summary of the geology and physical properties of the Climax stock, Nevada Test Site, U.S. Geol. Surv. Open File Rep77‐356, 1977.
Библиографическая ссылка McLaren, J. R., I.Titcheil, Physical properties of granite relevant to near field conditions in a nuclear waste depositoryRep. AERE‐R 10046U. K. At. Energy Auth., Harwell, England, 1981.
Библиографическая ссылка Meyer, L., R.Rachiele, Laboratory investigations of thermomechanical properties of Stripa granite, part I, Apparatus and resultsRep. LBL‐13435Lawrence Berkeley Natl. Lab., Berkeley, Calif., 1981.
Библиографическая ссылка Neretnieks, I., Diffusion in the rock matrix: An important factor in radionuclide retardation?, J. Geophys. Res., 85, 4379–4397, 1980.
Библиографическая ссылка Olkiewicz, A., K.Hansson, K.‐E.Almen, G.Gidlund, Geological and hydrological documentation at the Strips Research StationKBS Rep. 63Swed. Geol. Surv., Stockholm, 1978.
Библиографическая ссылка Page, L., H. C.Heard, Elastic moduli, thermal expansion, and inferred permeability of Climax quartz monzonite and Sudbury gabbro to 500oC and 55 MPa, Proc. U.S. Symp. Rock Mech., 22nd, 97–104, 1981.
Библиографическая ссылка Patrick, W. C., Spent fuel test‐Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in graniteRep. UCRL‐53702Lawrence Livermore Natl. Lab., Livermore, Calif., 1986.
Библиографическая ссылка Pearson, C. F., M. C.Fehler, J. N.Albright, Changes in compressional and shear wave velocities and dynamic moduli during operation of a hot dry rock geothermal system, J. Geophys. Res., 88, 3468–3475, 1983.
Библиографическая ссылка Richter, D., G.Simmons, Thermal expansion behavior of igneous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 11, 403–411, 1974.
Библиографическая ссылка Schock, R. N., B. P.Bonner, H.Louis, Collection of ultrasonic velocity data as a function of pressure for polycrystalline solidsRep. UCRL‐51508Lawrence Livermore Natl. Lab., Livermore, Calif., 1974.
Библиографическая ссылка Sears, F. P., B. P.Bonner, Ultrasonic attenuation measurement by spectral ratios utilizing signal processing techniques, IEEE Trans. Geosci. Remote Sens., GE‐19, 95, 1981.
Библиографическая ссылка Shes, M., Uranium migration at some hydrothermal veins near Marysvale, Utah: A natural analog for waste isolation, Mater. Res. Soc. Symp. Proc., 26, 227–238, 1984.
Библиографическая ссылка Simmons, G., H. W.Cooper, Thermal cycling cracks in three igneous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 145–148, 1978.
Библиографическая ссылка Simmons, G., D.Richter, Microcracks in rocks, The Physics and Chemistry of Minerals and RocksR. J. G.Sterns, 105–137, Wiley‐Interscience, New York, 1976.
Библиографическая ссылка Simmons, G., R. W.SiegfriedII, M.Feves, Differential strain analysis: A new method of examining cracks in rocks, J. Geophys. Res., 79, 4383–4385, 1974.
Библиографическая ссылка Sprunt, E. S., W. F.Brace, Direct observation of microcavities in crystalline rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 11, 139–150, 1974.
Библиографическая ссылка TaylorJr., H. P., Oxygen isotope evidence for large‐scale interaction between meteoric ground waters and Tertiary granodiorite intrusions, Western Cascade Range, Oregon, J. Geophys. Res., 76, 7855–7874, 1971.
Библиографическая ссылка Van der Molen, I., The shift of the α‐β transition temperature in quartz associated with the thermal expansion of granite at high pressure, Tectonophysics, 73, 323–342, 1981.
Библиографическая ссылка Wang, H. F., H. C.Heard, Prediction of elastic moduli via crack density in pressurized and thermally stressed rock, J. Geophys. Res., 90, 10342–10350, 1985.
Библиографическая ссылка Wilkins, B. J., Y.Liner, G. L.Rigby, Estimations of changes in microcrack‐population, elastic modulus, and permeability, due to differential‐thermal expansion in plutonic rock surrounding nuclear fuel waste disposal vault, Mater. Res. Soc. Symp. Proc., 50, 99–105, 1985.
Библиографическая ссылка Wong, T.‐F., Geometric probability approach to the characterization and analysis of microcracking in rocks, Mech. of Mater., 4, 261–276, 1985.
Библиографическая ссылка Wong, T.‐F., W. F.Brace, Thermal expansion of rocks: Some measurements at high pressure, Tectonophysics, 57, 95–117, 1979.

Скрыть метаданые