Автор |
Bird, Peter |
Дата выпуска |
1989 |
dc.description |
Previous techniques for modeling anelastic deformation of the lithosphere have included plane strain models, restricted to two‐dimensional problems, and quasi‐three‐dimensional “plane stress” or “thin plate” models, that did not accurately include the effects of the shallow frictional layer, or of kinematic detachment of crust from mantle. This paper presents techniques to remedy these deficiencies of thin plate models. An iteration strategy in which the rheology is linearized using artificial prestress and a particular effective viscosity tensor causes the calculation of horizontal velocities to converge monotonically, even with a frictional layer at the top of the lithosphere. A technique using two planar grids allows deformation and displacement to be different at the crust and mantle levels, at far less cost than that of a three‐dimensional grid. A finite element technique is developed for computing the changes in thickness of these layers caused by pure shear, simple shear, and pressure gradients. A technique based on relaxation of perturbation eigenfunctions solves the heat equation in the lithosphere during deformation. Accuracy of component numerical methods is good for simple test problems, but in realistic nonlinear problems utilizing all components, only the precision can be determined because of the lack of analytic solutions. Precision of the combined program is tested with a realistic sample problem and presented as a function of the number of iterations in each velocity solution (convergence factor 0.73 to 0.88), size of time step in the predictor/corrector time integration (convergence as Δt<sup>0.8</sup>), and number of degrees of freedom in the finite element grid (convergence as N<sup>−0.5 to −0.8</sup> for most variables). Overall cost of a simulation varies with the fractional precision Π as Π<sup>−3.3</sup>. A new consequence of kinematic detachment, a moving wave of crustal thickness, is found; unfortunately, the form of the wave depends on the finite element size. This means that element size must be chosen to approximate the smoothing by flexural rigidity effects that were neglected because of cost. |
Формат |
application.pdf |
Копирайт |
Copyright 1989 by the American Geophysical Union. |
Тема |
EXPLORATION GEOPHYSICS |
Тема |
Continental structures |
Тема |
Continental structures |
Тема |
PHYSICAL PROPERTIES OF ROCKS |
Тема |
Fracture and flow |
Тема |
PLANETARY SCIENCES: SOLID SURFACE PLANETS |
Тема |
Planetology: Solid Surface Planets and Satellites: Tectonics |
Тема |
STRUCTURAL GEOLOGY |
Тема |
Continental neotectonics |
Тема |
TECTONOPHYSICS |
Тема |
Continental neotectonics |
Тема |
Continental tectonics: extensional |
Тема |
Continental tectonics: general |
Тема |
GENERAL OR MISCELLANEOUS |
Тема |
Techniques applicable in three or more fields |
Название |
New finite element techniques for modeling deformation histories of continents with stratified temperature‐dependent rheology |
Тип |
article |
DOI |
10.1029/JB094iB04p03967 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Solid Earth |
Том |
94 |
Первая страница |
3967 |
Последняя страница |
3990 |
Выпуск |
B4 |
Библиографическая ссылка |
Anderson, E. M., The Dynamics of Faulting, Oliver and Boyd, Edinburgh, 1951. |
Библиографическая ссылка |
Bird, P., Finite element modeling of lithosphere deformation: The Zagros collision orogeny, Tectonophysics, 50, 307–336, 1978a. |
Библиографическая ссылка |
Bird, P., Initiation of intracontinental subduction in the Himalaya, J. Geophys. Res., 83, 4975–4987, 1978b. |
Библиографическая ссылка |
Bird, P., Continental delamination and the Colorado Plateau, J. Geophys. Res., 84, 7561–7571, 1979. |
Библиографическая ссылка |
Bird, P., Laramide crustal thickening event in the Rocky Mountain foreland and Great Plains, Tectonics, 3, 741–758, 1984. |
Библиографическая ссылка |
Bird, P., Formation of the Rocky Mountains, western United States: A continuum computer model, Science, 239, 1501–1507, 1988. |
Библиографическая ссылка |
Bird, P., J.Baumgardner, Steady propagation of delamination events, J. Geophys. Res., 86, 4891–4903, 1981. |
Библиографическая ссылка |
Bird, P., J.Baumgardner, Fault friction, regional stress, and crust‐mantle coupling in southern California from finite element models, J. Geophys. Res., 89, 1932–1944, 1984. |
Библиографическая ссылка |
Bird, P., K.Piper, Plane‐stress finite element models of tectonic flow in southern California, Phys. Earth Planer. Inter., 21, 158–175, 1980. |
Библиографическая ссылка |
Cohen, S. C., R. C.Morgan, Intraplate deformation due to continental collisions: A numerical study of deformation in a thin viscous sheet, Tectonophysics, 132, 247–259, 1986. |
Библиографическая ссылка |
Engebretson, D. C., A.Cox, R. G.Gordon, Relative motions between oceanic and continental plates in the Pacific basin, Spec. Pap. Geol. Soc. Am., 206, 59, 1985. |
Библиографическая ссылка |
England, P. C., Constraints on extension of continental lithosphere, J. Geophys. Res., 88, 1145–1152, 1983. |
Библиографическая ссылка |
England, P. C., G. A.Houseman, The influence of lithosphere strength heterogeneities on the tectonics of Tibet and surrounding regions, Nature, 315, 297–301, 1985. |
Библиографическая ссылка |
England, P. C., D. P.McKenzie, A thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc., 70, 295–322, 1982. |
Библиографическая ссылка |
England, P. C., D. P.McKenzie, Correction to a thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc., 73, 523–532, 1983. |
Библиографическая ссылка |
England, P. C., M.Searle, The Cretaceous‐Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet, Tectonics, 5, 1–14, 1986. |
Библиографическая ссылка |
Fleitout, L., C.Froidevaux, Tectonics and topography for a lithosphere containing density heterogeneities, Tectonics, 1, 21–56, 1982. |
Библиографическая ссылка |
Hildebrand, F. B., Methods of Applied Mathematics, Prentice‐Hall, Englewood Cliffs, N. J., 1965. |
Библиографическая ссылка |
Houseman, G., P. C.England, Finite strain calculations of continental deformation, 1, Method and general results for convergent zones, J. Geophys. Res., 91, 3651, 1986. |
Библиографическая ссылка |
Neugebauer, H. J., Crustal doming and the mechanism of rifting, 1, Rift formation, Tectonophysics, 45, 159–186, 1978. |
Библиографическая ссылка |
Sales, J. K., Crustal mechanics of Cordilleran foreland deformation: A regional and scale model approach, Am. Assoc. Pet. Geol. Bull., 52, 2016–2044, 1968. |
Библиографическая ссылка |
Sleep, N. H., Thermal effects of the formation of Atlantic continental margins by continental break up, Geophys. J. R. Astron. Soc., 24, 325–350, 1971. |
Библиографическая ссылка |
Sonder, L. J., P. C.England, G. A.Houseman, Continuum calculations of continental deformation in transcurrent environments, J. Geophys. Res., 91, 4797–4810, 1986. |
Библиографическая ссылка |
Toksoz, M. N., J. W.Minear, B. R.Julian, Temperature field and geophysical effects of a downgoing slab, J. Geophys. Res., 76, 1113–1138, 1971. |
Библиографическая ссылка |
Vilotte, J. P., M.Daignieres, R.Madariaga, Numerical modeling of intraplate deformation: Simple mechanical models of continental collision, J. Geophys. Res., 87, 10709–10728, 1982. |
Библиографическая ссылка |
Vilotte, J. P., M.Daignieres, R.Madariaga, O. C.Zienkiewicz, The role of a heterogeneous inclusion during continental collision, Phys. Earth Planet. Inter., 36, 236–259, 1984. |
Библиографическая ссылка |
Vilotte, J. P., R.Madariaga, M.Daignieres, O. C.Zienkiewicz, Numerical studies of continental collision; Influence of buoyancy forces and an initial stiff inclusion, Geophys. J. R. Astron. Soc, 84, 279–310, 1985. |
Библиографическая ссылка |
Wang, C.‐Y., Y.‐L.Shi, W.‐H.Zhou, On the tectonics of the Himalaya and the Tibet Plateau, J. Geophys. Res., 87, 2949–2957, 1982a. |
Библиографическая ссылка |
Wang, C.‐Y., Y.‐L.Shi, W.‐H.Zhou, The dynamic uplift of the Himalaya, Nature, 298, 553, 1982b. |
Библиографическая ссылка |
Zienkiewicz, O. C., The Finite Element Method, McGraw‐Hill, New York, 1977. |